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Using standard tools of nonlinear dynamics we analyze recently discovered instabilities of radio-frequency
charged-particle traps. In the cw-driven cylindrical Kingdon trap the instabilities occur at the two valuesh3

*

=3.613 046 7. . . andh4
* =4.431 124 4. . . of the trap’s control parameterh. Analytical estimates based on the

theory of Mathieu functions predicth3
* =pÎs363−32p2d / s66pÎ6−48p2d=3.692 392 2. . . andh4

* =sÎp /2d
3fs363−32p2d / sÎ1089+48p2−12pdg1/2=4.496 546 6. . .. The kicked Kingdon trap, an analytically solvable
model, predictsh3

* = 1
3
Î105=3.415 650 2. . . andh4

* =Î17=4.123 105 6. . .. We show that similar instabilities
occur in the two-particle Paul trap and the cw-driven spherical Kingdon trap.
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I. INTRODUCTION

One of the most fruitful ideas of modern physics is the
isolation and levitation of a countable number of charged
particles in electromagnetic traps[1]. An important class of
charged-particle traps are the radio-frequency traps. Its most
celebrated member, the Paul trap[2], was invented in the
1950s[3] and is still one of the most important laboratory
tools for the trapping of atomic and subatomic charged par-
ticles. A quick search of the database INSPEC revealed that
over the past five years no fewer than 200 papers were pub-
lished on the Paul trap and its applications in fields ranging
from squeezed states[4,5] and cavity quantum electrody-
namics[6] to novel frequency standards[7,8] and quantum
information processing[9,10]. Radio-frequency(rf) traps
primarily suited for the experimental and theoretical investi-
gation of nonlinear dynamics are the cylindrical[11–13] and
the spherical[13,14] dynamic Kingdon traps. Since rf traps
are indispensable tools in countless physics laboratories
throughout the world, it is important to know their proper-
ties. With the exception of the ideal single-particle Paul trap,
which is integrable both classically and quantum mechani-
cally [15,16], all rf traps are conceptually equivalent: they
are periodically driven nonlinear oscillators. In many cases,
especially if only a few particles are stored simultaneously in
the traps, it is possible to describe the trapped particles’ dy-
namics by two-dimensional area-preserving mappings. These
mappings exhibit universal properties[17,18] such as bifur-
cations and low-order resonances which point to the possible
existence of dangerous universal instabilities of rf traps. In-
deed we recently found two pronounced instabilities of the
cylindrical dynamic Kingdon trap[19,20] which can be
traced back to well-known low-order resonances and bifur-
cations of two-dimensional area-preserving maps[17,18].
We emphasize that the instabilities discussed in this paper
have nothing to do with the well-known instabilities caused
by field defects resulting in nonlinear coupling between dif-
ferent degrees of freedom[21,22]. The instabilities discussed
in this paper are single-degree-of-freedom dynamic instabili-
ties of the ideal traps which can be explained as due to
universal instabilities of the associated area-preserving
maps[17,18].

The purpose of this paper is to analyze the particle dy-
namics in rf traps using standard techniques of nonlinear
dynamics and to predict the existence of experimentally veri-
fiable instabilities in the Paul trap and the two dynamic
Kingdon traps. Knowledge of these instabilities is of utmost
importance for successfully operating these traps in the labo-
ratory.

The plan of this paper is as follows. In Sec. II we start
with a detailed analysis of the cylindrical dynamic Kingdon
trap. We chose this trap as the starting point of our presen-
tation because it has only a single control parameter and its
dynamics is already nonlinear for a single stored particle.
This fact allows a particularly clear exposition and the direct
application of standard nonlinear dynamics tools. In Sec. III
we present the kicked dynamic Kingdon trap. We show that
the kicked trap is an excellent model for the cw-driven dy-
namic Kingdon trap. Moreover, due to the impulsive drive of
this trap, its dynamics is exactly described by an area-
preserving two-dimensional mapping whose instabilities can
be computed analytically. They are shown to agree well with
the exact instability points of the cw-driven trap. In Secs. IV
and V we show that the instabilities we found in the cylin-
drical dynamic Kingdon trap are universal in the sense that
they also manifest themselves in the spherical dynamic
Kingdon trap(Sec. IV) and the Paul trap(Sec. V). In Sec. VI
we discuss our results. In Sec. VII we summarize our results
and conclude the paper. In the Appendix we present a high-
accuracy approximation of the limit cycle of the cylindrical
dynamic Kingdon trap which may be used in future investi-
gations for a more accurate analytical calculation of the pre-
dicted instabilities of the cw-driven cylindrical dynamic
Kingdon trap.

II. CYLINDRICAL DYNAMIC KINGDON TRAP

The Kingdon trap[23,24] is the tool of choice for the
investigation of topics ranging from laboratory models of the
solar system[25] to the precise measurement of the lifetimes
of metastable levels of heavy ions[26]. A variant of the
Kingdon trap, the dynamic Kingdon trap[11,12], is the focus
of this section. As shown in Fig. 1 the hardware of this trap
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is of stunning simplicity. In principle the trap consists of
nothing more than a rectilinear wire surrounded by a con-
ducting cylindrical surface with a superposition of ac and dc
voltages applied between them. Its simple design not-
withstanding, the classical dynamics of a particle stored
in the dynamic Kingdon trap is nonlinear[11,12,27] and
exhibits many of the properties of classically chaotic systems
[11,12,27,28].

Historically the cylindrical dynamic Kingdon trap was
first investigated at Freiburg University[29,30], where it was
used as a mass-selective ion source. The results of this in-
vestigation, however, were never published in the open lit-
erature [31]. In Ref. [11] this trap was rediscovered and
proposed as a convenient microlaboratory for the investi-
gation of classical and quantum chaos[28] and ion crystall-
ization [12].

For the past eight years the nonlinear dynamics of the trap
has been investigated in great detail both theoretically
[11,12,14,27,32] and experimentally[13,33]. Therefore it
came as a surprise when it was discovered only recently
[19,20] that voltage settings exist which render the trap com-
pletely unstable. The detailed investigation of these instabili-
ties is the focus of this section.

In Sec. II A we present the equation of motion of a
charged particle in the dynamic Kingdon trap and, with the
help of numerically computed phase-space portraits, explain
qualitatively the trapping mechanism. In Sec. II B we present
a detailed survey of the size of the primary trapping island of
the dynamic Kingdon trap. This survey points to the exis-
tence of fundamental instabilities of the trap and yields nu-
merical estimates for the critical values of the trap control
parameter at which the instabilities occur. In Sec. II C we use
Poincaré sections to reveal the origin of these instabilities:
the complete collapse of the primary trapping island due to a
collision between the trap’s first-order fixed point and a set
of third- or fourth-order fixed points. A resonance mecha-
nism, well known in the theory of two-dimensional area-
preserving mappings[17,18], allows us in Sec. II D to com-
pute the critical values of the trap’s control parameter
numerically with high precision and to obtain accurate ana-
lytical estimates. In Sec. II E we establish a connection be-
tween the instabilities of the dynamic Kingdon trap and gen-
eral results in the theory of two-dimensional area-preserving
mappings.

A. Working principle of the dynamic Kingdon trap

The dimensionless equation of motion of a charged par-
ticle in the electric field of the dynamic Kingdon trap is
given by [11]

d2r

dt2
= − f1 − 2h coss2tdg

1

r
, s1d

wheret is dimensionless time,r is the dimensionless distance
of the particle from the wire, andh is the dimensionless
control parameter. Forh.h1<3.125 (1) has ap-periodic
solution rLstd, i.e., a limit cycle[34]. A good approximation
for rLstd is given by(see Ref.[11] and the Appendix)

rLstd <
h

Î2
−

1
Î2

coss2td. s2d

For a generic choice ofh.h1 the limit cyclerLstd is stable.
As an example we computed the limit cycle forh=5. It is
shown as the full line in Fig. 2. Ath=h1 the limit cyclerLstd
undergoes a period-doubling bifurcation with further bifurca-
tions ath2<2.938,h3<2.917, . . . [11]. The period-doubling
scenario forhøh1 has already been investigated in detail
[11,27]. This is why in this paper we focus our investigation
of Eq. (1) on the rangehù3, which includesh1 but none of
the other bifurcation points.

In order to gain further insight into the working principle
of the dynamic Kingdon trap, we investigate its phase-space
structure. Phase space is explored with the help of phase-
space portraits. They are produced by turning Eq.(1) into a
mapping

Mtshd: frstd, ṙstdg ° fr8st + td, ṙ8st + tdg. s3d

The mapping(3) is called a “stroboscopic mapping” since it
is constructed by examining the solutions of Eq.(1) at regu-
larly spaced “snapshots” a time intervalt apart. Usuallyt is
chosen to be equal to the period of Eq.(1), i.e.,t=p. In this
case the mapping(3) is invertible and we identify

FIG. 1. Sketch of the cylindrical dynamic Kingdon trap. A su-
perposition of ac and dc voltages is applied between a rectilinear
wire and a surrounding cylindrical conductor resulting in dynamical
trapping of a charged particle in the free space between the wire and
the cylinder.

FIG. 2. Multiple-exposure Poincaré section forh=5 illustrating
the organization of the phase space of the dynamic Kingdon trap
around its limit cycle(full line).
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Mpshd ; Mshd. s4d

Occasionally, however, other strobing timest turn out to be
useful (see discussion below).

As a first application of the stroboscopic mapping(3) we
show that the phase-space dynamics of Eq.(1) is organized
aroundrLstd. This is demonstrated in Fig. 2 by means of a
“multiple-exposure” Poincaré section produced on the basis
of Eq. (3) with t=p /8 in the following way. We solve Eq.
(1) for 121 different initial conditions srm, ṙnd=f2+sm
−1d0.3,−2+sn−1d0.4g, m,n=1, . . . ,11, and strobe the re-
sulting phase-space trajectories attk

s jd=kp+s j −1dp /8, k
=1, . . . ,500,j =1, . . . ,8. Figure 2 shows that for eachj we
obtain an island of stability organized around the limit cycle
rLstd. This explains the trapping mechanism of a charged
particle in the dynamic Kingdon trap. Started att=0, some-
where in the leftmost island of stability, the phase-space tra-
jectory of the particle is carried clockwise along the limit
cycle from one stable island to the next. As a result, the
particle is trapped forever, but executes an oscillatory motion
in both r and ṙ, which is known as itsmicromotion[35]. If a
particle is launched outside of the stable island in the chaotic
sea, it will, for some time, follow a transiently chaotic tra-
jectory until it hits the wire or the cylinder, discharges, and
falls out of the trap.

The stable phase-space island whose center is pierced by
the limit cycle is called theprimary trapping island. Since
Eq. (1) is nonlinear, there exist, in general, secondary trap-
ping islands surrounding the primary trapping island. These
islands, however, are generally smaller than the large pri-
mary trapping island, and not of much practical importance
for trapping.

B. Trapping efficiency

Trapping in the dynamic Kingdon trap is a nonlinear ef-
fect which depends decisively on the existence of stable is-
lands in phase space. In this respect the dynamic Kingdon
trap is fundamentally different from the Paul trap[1–3] or
the Penning trap[36], in which, in principle, particles can be
stored irrespective of their positions and momenta. We define
the sum-totalSshd of all stable phase-space areas of Eq.(1)
as thetrapping efficiencyof the dynamic Kingdon trap for
control parameter settingh. Since, as mentioned above, sec-
ondary islands are usually much smaller than the primary
trapping island,Sshd is also a good approximate measure of
the phase-space area of the primary trapping island.

In order to computeSas a function ofh we computed 701
stroboscopic Poincaré sections(strobing times tk=kp, k
=1, . . . ,1000) of Eq. (1) for h values ranging fromh=3 to
h=10 in steps ofdh=0.01 and determined the stable phase-
space areas numerically with a phase-space resolutionDr
3Dṙ of better than 2310−4. The result is shown in Fig. 3(a).
We see that from abouth=4.5 onSshd is positive and in-
creasing on average. This means that in thish regime the
dynamic Kingdon trap provides stable trapping of charged
particles. However, as shown by the inset of Fig. 3(a), Sshd
vanishes twice in the interval 3,h,4.5 at two critical con-
trol parameters, which we callh3

* andh4
* . On the basis of our

h resolution ofdh=0.01 we determined thatSshd vanishes at

h3
* < 3.61, h4

* < 4.43. s5d

As is barely discernible from the inset of Fig. 3(a), but con-
firmed by additional detailed numerical calculations,Sshd
does not vanish ath=h1, the location of the first bifurcation
of the limit cycle. Thush3

* andh4
* are indeed the only values

in the range 3øhø10 whereSshd vanishes. A vanishingS
means that no stable trapping is possible. Therefore the trap
is unstable ath3

* and h4
* . A detailed examination of phase-

space portraits presented in the following section will shed
more light on the origin of these instabilities.

C. Island collapse

In this section we show that the instabilities of the trap at
h3

* and h4
* are due to the complete collapse of the primary

FIG. 3. The stability functionS, a measure of the phase-space
area of stable islands, as a function of the control parameterh for
the cw-driven trap(a) and the kicked trap(b). The insets show that
for both trapsSshd vanishes twice in the interval 3øhø10 at h
values, calledh3

* and h4
* (marked by arrows), indicating complete

instability of the traps at these critical control parameters. The ar-
rows athN

R, Nù5, mark theh values where the rotation frequency
of the center of the primary trapping island is in resonance with(a)
the frequency of the trap’s ac voltage and(b) the kick frequency of
the trap.
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trapping island of Eq.(1) at these two critical values of the
trap’s control parameterh. Inspecting many phase-space por-
traits of Mshd in the vicinity of h3

* , we found that ash
approachesh3

* a set of unstable period-3 fixed points move in
on the center of the primary trapping island(a period-1 fixed
point) squeezing the primary trapping island to zero phase-
space area ath=h3

* . A similar mechanism is at work in the
vicinity of h4

* . Here a set of unstable period-4 fixed points
approaches the primary trapping island squeezing it to zero
phase-space area ath=h4

* . Close visual inspection of a large
database of phase-space plots in the vicinity ofh3

* and h4
*

allowed us to improve the accuracy of Eq.(5). On the basis
of our graphical material we determined that the primary
trapping island shrinks to zero phase-space area at

h3
* < 3.613, h4

* < 4.431. s6d

These values are consistent with Eq.(5).
The island collapse mechanism discussed above is illus-

trated in Figs. 4 and 5. Figure 4 shows a sequence of three
phase-space portraits forh=3.57 (a), h=3.613<h3

* (b), and
h=3.65 (c). The three panels of Fig. 4 show that the size of
the primary trapping island is entirely determined by the lo-
cation of a set of unstable period-3 fixed points of the stro-
boscopic Poincaré mapping. As shown in Fig. 4, the primary
island is indeed squeezed to zero area ath3

* as the unstable
period-3 fixed points move in to collide with the primary
period-1 fixed point ath3

* . The “triangle” defining the bound-
aries of the primary trapping island forh close toh3

* , but
hÞh3

* , is an example of a homoclinic cycle[34] formed of
the degenerate stable and unstable manifolds of the unstable
period-3 fixed points.

Figure 5 illustrates the collapse mechanism ath4
* . As

shown in Fig. 5, a set of collapsing period-4 fixed points
squeeze the primary trapping island to zero phase-space area
at h=h4

* . The instability mechanism based on a collapsing
set of unstable period-3 and period-4 fixed points explains
our notation for the two criticalh values.

D. Critical control parameters

As discussed in the preceding section, the reason for the
instabilities of the trap ath3

* and h4
* is the caging of the

primary trapping island by unstable, third- and fourth-order
fixed points, respectively, which collapse to a point at the
two critical control parameters. Forh close toh3

* a phase-
space trajectory started att=0 inside of the primary trapping
island will have twisted by an angle of approximately 2p /3
around the limit cyclerLstd at t=p owing to its proximity to
the third-order fixed points. Ath=h3

* the twist angle will be
exactly 2p /3 due to the fact that ath3

* the center of the
primary trapping island and the third-order fixed points are
degenerate. This defines a resonance mechanism which we
use to computeh3

* andh4
* according to the following proce-

dure. We linearize(1) aroundrLstd and determineh3
* andh4

*

according to the condition that the twist angle of the linear-
ized mapping equals 2p /3 and 2p /4, respectively. Defining

rstd = rLstd + jstd, ṙstd = ṙLstd + pstd, s7d

we linearize Eq.(1), obtaining the following system of equa-
tions for jstd andpstd:

j̇std = pstd,

FIG. 4. Illustration of the collapse of the primary trapping island
of the cylindrical dynamic Kingdon trap in the vicinity ofh=h3

* . (a)
h=3.57,(b) h=3.613<h3

* , (c) h=3.65. A set of unstable period-3
fixed pointssh,h3

*d (a) collapses ath=h3
* (b) squeezing the pri-

mary trapping island to zero phase-space area. The primary trapping
island reemerges forh.h3

* (c).
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ṗstd =
1 − 2h coss2td

rL
2std

jstd. s8d

Integrating Eq.(8) from t=0 to t=p defines the linearized
one-cycle mapping

Sj8

p8
D = LshdSj

p
D , s9d

where sj8 ,p8d are position and momentum att=p when
starting withsj ,pd at t=0. The matrix elements ofL depend

only on h and are determined by a two-step process in the
following way. Starting withjs0d=1, ps0d=0, and integrat-
ing Eq. (8) over one cycle yieldsL11=jspd, L21=pspd.
Starting withjs0d=0, ps0d=1 yields L12=jspd, L22=pspd.
Since the primary trapping island is an elliptical island, the
eigenvalues ofLshd are of the forml1,2shd=expf±iwshdg,
where wshd is the twist angle. Solving the equationswshd
=2p /3 andwshd=2p /4 numerically yields

h3
* = 3.613 046 7 . . . , h4

* = 4.431 124 4 . . . , s10d

respectively. These values are consistent with Eq.(6).
The pronounced local minima inSshd for h.h4

* (see Fig.
3) can be explained qualitatively with the same mechanism
that gave rise to the instabilities ath3

* andh4
* . The first pro-

nounced minimum inSshd to the right ofh4
* is caused by a

set of unstable period-5 fixed points caging the primary trap-
ping island; the next minimum is caused by a set of unstable
period-6 fixed points caging the primary trapping island, and
so on. In complete analogy with the mechanism ath3

* andh4
*

the stable and unstable manifolds of the period-N fixed
points form a homoclinic cycle in the form of a regular poly-
gon, which completely confines the primary trapping island.
In the vicinity of the minima the polygons shrink and reex-
pand. But forNù5 their areas never shrink to zero resulting
in mere minima ofSshd instead of zeros. We call this phe-
nomenonincomplete island collapse. The reason for incom-
plete island collapse is well understood and discussed in de-
tail in Sec. II E.

If this picture is correct, we should be able to use the
resonance method and find an approximate correlation be-
tween theh values where the twist angle of the primary
trapping island equals 2p /N, N=5,6, . . ., and thelocations
of the minima in Fig. 3. Solving the equationwNshd=2p /N,
N=5,6, . . ., as we didabove forN=3,4, weobtain the reso-
nanceh’s hN

R marked with arrows in Fig. 3(a). As expected,
the correlation between the minima and the arrows is best for
the deepest minima(closest to complete island collapse) and
gets progressively worse for largerh where the minima are
far from S=0 and then start to vanish altogether. This shows
conclusively that, even in the case of incomplete island col-
lapse forN.4, near-resonance is the physical reason for the
minima in Sshd resulting in reduced stability of the trap.

We can even explain the small dips that occur close to the
local maxima ofSshd. The dips are due to higher-order reso-
nances, where the winding numbern is a rational number,
i.e., n=M /N. We checked that the largest dips are due ton
=2/s2N+1d resonances. In particular we checked that the
dip occurring ath<3.95 [see inset of Fig. 3(a)] is due to a
2/7 resonance, and the dip ath<4.77 is due to an=2/9
resonance.

Using the same general procedure, we now compute ana-
lytical approximations toh3

* andh4
* . Using the approximate

expression(2) for rLstd results in

j̈std −
f2 − 4h coss2tdg
fh − coss2tdg2 jstd = 0. s11d

For largeh this is a Mathieu equation[37]. Since we are
interested inh values that are larger than 3, but still not

FIG. 5. Collapse of the primary trapping island of the cylindrical
dynamic Kingdon trap in the vicinity ofh=h4

* . (a) h=4.41, (b) h
=4.431<h4

* , (c) h=4.44. A set of unstable period-4 fixed points
sh,h4

*d (a) collapses ath=h4
* , (b) squeezing the primary trapping

island to zero phase-space area. The primary trapping island re-
emerges forh.h4

* (c).
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asymptotically large, we start with a Fourier expansion of the
drive term in Eq.(11) keeping terms up to order coss2td, i.e.,

2 − 4h coss2td
fh − coss2tdg2 = A + B coss2td + ¯ , s12d

where

A =
1

p
E

0

2p 1 − 2h cossxd
fh − cossxdg2 dx= −

2h

fh2 − 1g3/2 s13d

and

B =
2

p
E

0

2p 1 − 2h cossxd
fh − cossxdg2 cossxddx

= − 8hh − Îh2 − 1j −
4

fh2 − 1g3/2. s14d

The integrals in Eqs.(13) and (14) were computed using
formula 3.6614 of Ref.[38]. Replacing the drive term in Eq.
(11) with its expansion(12) results in a Mathieu equation
which, in standard form[37], is given by

j̈std + fa − 2q coss2tdgjstd = 0, s15d

where a=−A and q=B/2. The Mathieu equation(15) has
Floquet solutions of the form

jFstd = eimtFstd, s16d

whereFstd is p periodic andm is the characteristic exponent
[37]. For smalla, as is the case here, we may use formula
20.3.18 of Ref.[37],

cossmpd = S1 −
ap2

2
+

a2p4

24
+ ¯D −

q2p2

4
F1 + aS1 −

p2

6
D

+ ¯G + q4Sp4

96
−

25p2

256
+ ¯D + ¯ , s17d

to connecta and q with m. For theh3
* resonance we have

m=2/3 and for theh4
* resonance we havem=1/2.Sincem is

known anda,q are functions ofh only, Eq. (17) can be
solved forh to determineh3

* andh4
* . However, as it stands,

Eq. (17) is too difficult to solve analytically. But expanding
Eq. (17) to fourth order in 1/h,

cossmpd < 1 −
2p2

h2 +
1

h4H2p4

3
−

121p2

16
J , s18d

we obtain a quadratic equation in 1/h2, which can be solved
immediately. Form=2/3 weobtain

h3
* = pÎ 363 − 32p2

66pÎ6 − 48p2
= 3.692 392 2. . . s19d

and form=1/2 weobtain

h4
* =

Îp

2 F 363 − 32p2

Î1089 + 48p2 − 12p
G1/2

= 4.496 546 6 . . . .

s20d

Both values compare favorably with the numerically exact
values(10).

E. Connection with bifurcation theory of nonlinear mappings

When they were first discovered about two years ago
[19,20] the instabilities of the dynamic Kingdon trap ath3

*

andh4
* were quite surprising and unexpected, because nearly

a decade of research, both theoretical[11,12,14,27,32] and
experimental[13,33], did not find so much as a hint of them.
In retrospect, however, when the cylindrical dynamic King-
don trap is put into the general context of nonlinear map-
pings, the instabilities ath3

* andh4
* find a natural explanation.

Let us define the residueR of the linearizationL [see Eq.
(9)] of the mappingM [see Eqs.(3) and (4)] according to
[17]

R= 1
4f2 − Tr Lshdg = sin2spnd, s21d

where Tr is the trace andn is the “winding number.” The
winding numbern and the twist anglew are connected in the
following way:

n =
w

2p
. s22d

Evaluated at the position of the primary fixed point ofM, n
counts how many times the primary trapping island rotates
around the fixed point during the mapping timep.

The primary fixed point ofM is stable for 0,R,1. It is
unstable forR,0 or R.1. SinceR is computed on the basis
of the linearizationL of M, this means that in general linear
stability theory is enough for investigating the stability of the
primary fixed point ofM. However, it is well known[17,18]
that linear stability theory may fail forR=0,1/2,3/4,1, and
only for these four exceptional values.

In the case of the dynamic Kingdon trapR=0 does not
occur for finite h, R=1/2 corresponds to then=1/4 reso-
nance ath=h4

* , R=3/4 corresponds to then=1/3 resonance
at h=h3

* , and R=1 corresponds to the first bifurcation at
h=h1.

In the theory of general nonlinear mappings the phase-
space scenarios forR=1/2 andR=3/4 have been studied in
detail [17,18]. Indeed, quite generally for nonlinear map-
pings, in the vicinity ofR=3/4 the scenario illustrated in
Fig. 4, and forR=1/2 thescenario illustrated in Fig. 5 un-
folds. Thus island collapse is a general, universal phenom-
enon, not restricted to rf traps. It occurs, e.g., in the annulus
billiard [39] and the gravitational wedge billiard[40].

Even the approximately quadratic behavior ofSshd in the
vicinity of h3

* and the approximately linear behavior ofSshd
in the vicinity of h4

* [see inset of Fig. 3(a)] can be explained.
According to Ref.[41] Appendix 7, the unstable period-3
fixed points approach the stable period-1 fixed point with
phase-space coordinates proportional touh−h3

* u, i.e., the
phase-space area of the caging triangle in Fig. 4 is propor-
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tional to sh−h3
*d2, consistent with the approximately qua-

dratic behavior ofSshd close toh3
* as shown in Fig. 3(a). In

the case of the instability ath4
* the linear dimensions of the

caging rectangle are proportional touh−h4
* u1/2 [41]. There-

fore the phase-space area of the caging rectangle behaves
like uh−h4

* u in the vicinity of h4
* , consistent with the linear

behavior ofSshd close toh4
* [see Fig. 3(a)].

An important remark is now in order. Although all rf traps
correspond to some nonlinear mappingM, it is not guaran-
teed thatM (i) has a(stable) period-1 fixed point at all and
(ii ) that R=1/2 or R=3/4, leading to trap instabilities, exist
at all. Indeed plenty of mappings are known[42] which do
not have stable period-1 fixed points, and in which scenarios
akin to those displayed in Figs. 4 and 5 do not exist. There-
fore the existence ofR=1/2 andR=3/4 instabilities cannot
be guaranteeda priori, just because traps correspond to non-
linear mappings. In other words, if some rf trapT exhibits
R=1/2 and/orR=3/4 instabilities, this is a nontrivial prop-
erty of T. Therefore, the purpose of the remainder of this
paper is to show that additional rf traps exist which exhibit
R=1/2 andR=3/4 instabilities.

III. KICKED KINGDON TRAP

In this section we study the kicked Kingdon trap. It is
obtained by replacing the smooth drive in the force term of
Eq. (1) with a series ofd function kicks according to

− 1 + 2h coss2td ,
a

2
dpstd − bdpSt −

p

2
D +

a

2
dpst − pd,

s23d

wherea andb are given by

a =
p

2
sh − 1d, b =

p

2
sh + 1d, s24d

and

dpstd = o
m=−`

`

dst − mpd =
1

p
o

m=−`

`

e2imt s25d

is thep-periodicd function. For the choice(24) the left- and
right-hand sides of Eq.(25) are identical up to terms coss2td.
Although Eq.(23) could equally well be written asadpstd
−bdpst−p /2d, we chose the particular form(23) since it
indicates more clearly the proper construction of the one-
cycle kick map, which starts with a kick of strengtha /2
followed by free motion of durationDt=p /2, followed by a
kick of strength −b, subsequent free motion of durationDt
=p /2, and completed with a kick of strengtha /2. The map-
ping thus constructed is different from the mapping studied
in Ref. [14]. The choice(23) makes the resulting one-cycle
kick map more symmetric and places the center of the pri-
mary trapping island atp=0, where it occurs for the continu-
ously driven(cw-driven) trap.

The one-cycle mapping defined by Eq.(23) takes the
phase-space pointsr ,pd at t=0 to sr8 ,p8d at t=p. It is given
explicitly by

r8 = r + pp +
pa

2r
−

pb

2r + pp +
pa

2r

,

p8 = p +
a

2r
−

2b

2r + pp +
pa

2r

+
a

2r + 2pp +
pa

r
−

2pb

2r + pp +
pa

2r

. s26d

The first-order fixed pointsr f
skd ,pf

skdd of the kick map(26), the
center of the primary trapping island, is located at

r f
skd =

p

4
sh − 1d =

a

2
, pf

skd = 0. s27d

This can be compared with the locationsr f
scwd ,pf

scwdd of the
fixed point of the cw-driven trap. According to Eq.(2) we
have

r f
scwd <

1
Î2

sh − 1d, pf
scwd = 0. s28d

The relative error between the two is constant inh and given
by

U r f
skd − r f

scwd

r f
scwd U =

pÎ2

4
− 1, s29d

which amounts to about 11%. This is a good accuracy given
the simple kick approximation(23).

The phase-space dynamics of Eq.(1) and the kick map
(26) are qualitatively the same. We illustrate this in Fig. 3(b),
which shows the trapping efficiencySshd for the kick map
(26) computed in the same way as for the cw-driven trap.
Comparing Figs. 3(a) and 3(b), we see thatSshd is indeed
qualitatively the same. In particularSshd of the kick map
also has two zeros close toh3

* andh4
* . We call themh3

*skickd
andh4

*skickd, respectively.
In the case of the kick map we can prove analytically that

the mechanism responsible for the instabilities ath3
*skickd

andh4
*skickd is in fact due to a collision between the center

of the primary trapping island and a degenerate set of un-
stable period-3 and period-4 fixed points, respectively. Fo-
cussing on the caseh3

*skickd, we compute the third-order
fixed point of Eq.(26) by starting atsr ,0d and iterating(26)
three times. The condition to return tosr ,0d after three itera-
tions leads to the equation

Fsrd = fxsrd − rgF 2

p
−

a

2rxsrdG + Fxsrd
p

+
a

2xsrdG
−Îx2srd

p2 + 1 +
a

p
= 0, s30d

where
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xsrd = r +
pa

2r
−

2pbr

4r2 + pa
. s31d

For h close toh3
*skickd Fsrd is locally quadratic. One of its

zeros corresponds to the period-1 fixed point atr =a /2, the
other to the period-3 fixed point. A collision of the two fixed
points occurs if the zero atr =a /2 becomes degenerate, i.e.,
F8sa /2d=0. When this happens, it also determines the exact
value ofh3

*skickd. The conditionF8sa /2d=0 yields

1 −
12p2

ab
−

2p

a
+

16p3

a2b
+

4p2 − ab

sa + 2pdb
= 0. s32d

This equation can be solved forh and yields

h3
*skickd = 1

3
Î105 = 3.415 650 2 . . . . s33d

The existence of this solution proves that the degeneracy
actually happens. Its numerical value is close toh3

* of the
cw-driven trap[see Eq.(10)].

In complete analogy to the computation ofh3
*skickd we

computeh4
*skickd. We obtain

h4
*skickd = Î17 = 4.123 105 6 . . . . s34d

The existence of this solution proves that indeed a set of
degenerate period-4 fixed points collides with the period-1
center of the trapping island ath4

*skickd of the kick map. The
numerical value ofh4

*skickd is close toh4
* of the cw-driven

trap [see Eq.(10)].
The kicked Kingdon trap offers the possibility of check-

ing analytically that the “resonance method” yields the same
result as the computation ofh3

*skickd andh4
*skickd via direct

fixed point calculations as done above. In order to use the
resonance method, we linearize Eq.(26) obtaining the phase-
space mapping

S r8

p8
D = L̃shd S r

p
D , s35d

where

L̃11 =
] r8

] r
= 1 −

pa

2r2 −
2pbspa − 4r2d

f4r2 + 2ppr + pag2 ,

L̃12 =
] r8

] p
= p +

4p2br2

f4r2 + 2ppr + pag2 ,

L̃21 =
] p8

] r
=

a

2r2 −
2

p
+ F 2

p
−

a

2sr8d2G ] r8

] r
,

L̃22 =
] p8

] p
= − 1 +F 2

p
−

a

2sr8d2G ] r8

] p
. s36d

SinceL̃ is an area-preserving mapping, its determinant is 1.
Its residue, evaluated atr =r8=a /2, p=0, is

Rshd =
8

h2 − 1
. s37d

Since Rfh3
*skickdg=3/4 (see Sec. II E), it can be checked

immediately thath3
*skickd=Î105/3, and sinceRfh4

*skickdg
=1/2, h4

*skickd=Î17. This confirms Eqs.(33) and (34) to-
gether with the equivalence of the resonance method and the
fixed point collision method.

In the case of the kicked trap the resonanceshN
Rskickd for

Nù5 are obtained analytically by solving Eq.(21) for n
=1/N, Nù5 with R given by Eq.(37). This leads to the
equation

hN
R = F1 +

16

1 − coss2p/NdG1/2

. s38d

Explicitly, h5
R=4.914 8. . .,h6

R=Î33, h7
R=6.595 1. . .,h8

R=s33
+16Î2d1/2, h9

R=8.330 0. . .. These values are marked by the
arrows in Fig. 3(b). Again we see that the correlation be-
tween the minima and the arrows is best for the deepest
minima, in particular for the first minimum ath5

R, whereSshd
nearly reachesS=0.

IV. SPHERICAL DYNAMIC KINGDON TRAP

An important question is whether the instabilities ath3
*

and h4
* in the cylindrical dynamic Kingdon trap are acci-

dents, or whether this result is structurally stable. As dis-
cussed at the end of Sec. II E this is a nontrivial question,
and it is far from guaranteed that other traps with these prop-
erties exist. Thus the purpose of this section is to prove that
in fact another trap exists, the spherical dynamic Kingdon
trap, which shows instabilities in analogy to the instabilities
occurring ath3

* and h4
* in the cylindrical dynamic Kingdon

trap.
Figure 6 shows a sketch of the spherical dynamic King-

don trap. It consists of two nested ideally conducting shells
(a spherical capacitor) with a superposition of ac and dc volt-
ages applied between them. The dimensionless equation of
motion of the spherical dynamic Kingdon trap is given by
[14]

d2r

dt2
= − f1 − 2h coss2tdg

1

r2 . s39d

Although this type of trap was studied intensively both theo-
retically [14] and experimentally[13], instabilities were not
previously reported to occur in this type of trap. Figures 7
and 8, however, show that theN=3 and N=4 resonances
produce the same type of instabilities in the spherical dy-
namic Kingdon trap as already seen in the cylindrical dy-
namic Kingdon trap(see Sec. II and Figs. 4 and 5). The exact
locations of theN=3 andN=4 collapse points were deter-
mined using the same methodology as was used in the case
of the cylindrical dynamic Kingdon trap(see Sec. II D). As a
result we obtain that the primary trapping island of the
spherical dynamic Kingdon trap vanishes ath3

*

=3.161 713 2. . . andh4
* =3.864 074 7. . ..

Figures 7(a)–7(c) and 8(a)–8(c) show the collapse sce-
narios for theN=3 andN=4 resonances. They are very simi-
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lar to the corresponding scenarios exhibited by the cylindri-
cal dynamic Kingdon trap[compare Figs. 4(a)–4(c) and
5(a)–5(c)]. In particular even the orientations of the primary
trapping islands before and after the fixed point collisions are
the same. Thus the instabilities exhibited by the cylindrical
dynamic Kingdon trap are not an isolated phenomenon, but
they are shared by at least one other trap: the spherical dy-
namic Kingdon trap. In the following section we show that
even the Paul trap, the most important and most widely used
rf trap, exhibits theN=3 andN=4 instabilities.

V. PAUL TRAP

Figure 9 shows a sketch of the Paul trap. It consists of an
ideally conducting hyperbolic ring electrode and two ideally
conducting hyperbolic end caps[1–3]. Since its invention by
Paul and collaborators in the 1950s the Paul trap has evolved
into one of the most important tools of modern atomic phys-
ics. The dimensionless equations of motion for a single
charged particle stored in a Paul trap are given by

d2

dt21X

Y

Z
2 = − fa − 2q coss2tdg1 X

Y

− 2Z
2 , s40d

wherea and q, proportional to the applied dc and ac volt-
ages, respectively, are the two dimensionless control param-
eters of the trap andX,Y,Z are the particle’s coordinates.
The Paul trap is globally stable[i.e., the solutions of Eq.(40)
are bounded], if the trap is operated with parameter combi-
nationssq,ad chosen from the interior of the stability area
defined by the linesc,d,e, f in Fig. 10. In this respect the
Paul trap is completely different from the dynamic Kingdon
traps where, in addition to the control parameter setting, the

stability of a trapped particle also depends on the initial con-
ditions of its associated phase-space trajectory.

With the help of Mathieu functions[37] the linear, single-
particle equations(40) are integrable and instabilities due to
nonlinear resonance scenarios do not occur. This changes
drastically if two or more particles are simultaneously stored
in the trap. In this section we study the two-particle case in
detail.

FIG. 6. Sketch of the spherical dynamic Kingdon trap. A super-
position of ac and dc voltages is applied between two concentric
ideally conducting shells. The resulting oscillating electric field pro-
duces dynamical trapping of a charged particle in the free space
between the two shells.

FIG. 7. Island collapse for the spherical dynamic Kingdon trap
at theN=3 resonance.(a) h=3.13(immediately before the collapse
point), (b) h=h3

* =3.161 713 2. . .(at the collapse point), (c) h
=3.19 (immediately after the collapse point). The scenario is remi-
niscent of the scenario exhibited by the cylindrical dynamic King-
don trap at theN=3 resonance shown in Fig. 4(a)–4(c).
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The center of massXW =sX,Y,Zd=sXW 1+XW 2d /2 of two

simultaneously stored particles with coordinatesXW 1

=sX1,Y1,Z1d and XW 2=sX2,Y2,Z2d satisfies the linear equa-
tions of motion(40) and is uninteresting in the present con-

text. The relative coordinatexW =sx,y,zd=XW 1−XW 2 satisfies the
equations of motion

d2

dt21x

y

z
2 = − fa − 2q coss2tdg1 x

y

− 2z
2 +

xW

uxWu3
. s41d

This equation is nonlinear and its associated stroboscopic
mapping, i.e., the mapping that takesxWsnpd to xWfsn+1dpg,
may therefore exhibitN=3 and N=4 instabilities as dis-
cussed in Sec. II E. This is indeed the case. But before we are
ready to investigate theN=3 and N=4 instabilities of the

FIG. 8. Island collapse for the spherical dynamic Kingdon trap
at theN=4 resonance.(a) h=3.82(immediately before the collapse
point), (b) h=h4

* =3.864 074 7. . .(at the collapse point), (c) h=3.9
(immediately after the collapse point). The scenario is reminiscent
of the scenario exhibited by the cylindrical dynamic Kingdon trap at
the N=4 resonance shown in Fig. 5(a)–5(c).

FIG. 9. Sketch of the Paul trap. A superposition of ac and dc
voltages is applied between an ideally conducting hyperbolic ring
electrode and two ideally conducting hyperbolic end caps.

FIG. 10. Stability diagram of the Paul trap. The trap is globally
stable if operated with asq,ad control parameter setting taken from
inside of the stability region framed by the curvesc,d,e, andf. The
different shades of gray indicate control parameter combinations
sq,ad where two simultaneously stored ions in their lowest-energy
state arez aligned (light shade of gray, labeled “Z” ), xy-aligned
(darker shade of gray, labeled “XY” ), and aligned at an angle with
respect to thez axis (dark shade of gray, labeled “A1” and “A2” ).
The areasA1 andA2 are not contiguous. AreasC1 andC2 separated
by areaA2 are chaotic regions. The heavy lines labeledN=3sXYd
andN=4sXYd correspond tosq,ad parameter combinations where a
two-ion crystal in thexy plane experiences anN=3 sN=3d reso-
nance and breaks up. The heavy lines labeledN=3sZd and N
=4sZd correspond tosq,ad parameter combinations where a two-ion
crystal aligned with thez axis experiences anN=3 sN=4d reso-
nance and breaks up.
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Paul trap in detail we have to discuss the possible two-ion
configurations in a Paul trap.

Stationary minimal-energy configurations in the Paul trap
are known as two-ion crystals[43]. It is well known [43,44]
that there are three possibilities for the alignment of two-ion
crystals in the Paul trap. The two ions of the crystal can
either align with thez axis, lie in thexy plane, or form an
angle with thez axis. Which of the three stationary configu-
rations is actually selected depends on the parameter combi-
nation sq,ad with which the trap is operated. Two ions in
their lowest-energy configuration are aligned with thez axis
if sq,ad is selected from the lightly shaded region of the
stability diagram shown in Fig. 10(labeled “Z” ). The two
ions will lie in the xy plane if sq,ad is selected from the
darker area of the stability diagram in Fig. 10(labeled “XY” )
and the two ions will form an angle with thez axis if sq,ad is
selected from the two areas with the darkest shade of gray in
Fig. 10 (labeled “A1” and “A2” ). The white areas of the sta-
bility diagram in Fig. 10, labeled “C1” and “C2,” correspond
to chaotic regions where simple stationary ion configurations
are hard to find.

We start with discussingz-aligned ion crystals. In this
casex=y=0 for all time and only thez equation of Eq.(41)
needs to be considered. Using the methodology discussed in
Sec. II D we determined the locations of theN=3 andN=4
resonances ofz-aligned ion crystals. Since the Paul trap de-
pends on two control parameters, theN=3 andN=4 insta-
bilities are located on lines in the stability diagram of Fig. 10
labeledN=3sZd andN=4sZd, respectively. Since thez equa-
tion of Eq. (41) is defined for the entire range ofq values
shown in Fig. 10, we plotted the two curvesN=3sZd and
N=4sZd in the entire interval 0,q,0.7. In complete anal-
ogy to the z-aligned case we also plotted the linesN
=3sXYd and N=4sXYd, which correspond toxy-aligned ion
crystals.

Figure 11 shows that on the curveN=3sXYd the primary
trapping island vanishes just like it did in the analogous
cases of the cylindrical and the spherical dynamic Kingdon
traps. But Fig. 11(b) shows that although the primary trap-
ping island is destroyed forsq,ad on N=3sXYd, there is a
fundamental difference compared with the dynamic Kingdon
traps: even at theN=3 resonance point large, stable, second-
ary, third-order islands remain. Figure 12 shows the island
destruction scenario for the caseN=4. Here, too, the primary
island vanishes, but a chain of large, stable, secondary,
fourth-order islands remains.

We now demonstrate that our prediction of the occurrence
of N=3 andN=4 instabilities in the Paul trap can be tested
experimentally. We focus on theN=3 instability at sq
=0.5712,a=0.25d. A phase-space portrait of this case is
shown in Fig. 13(a). The primary trapping island is clearly
destroyed. Figure 13(b) is a composite phase-space portrait
in analogy to Fig. 2. Figure 13(b) shows the primary trapping
island atq=q1=0.56. For increasingq the primary trapping
island moves to the left, where we show it again atq=q2
=0.59. The critical point, atq=q* =0.5712, as shown in Fig.
13(a), is located in between the two trapping islands.

In order to reveal theN=3 resonance atq=q* , we ran the
following simulation. We started az-aligned two-ion crystal

close to the center of the trapping island atq=q1. We then
increased the control parameterq at a rate ofq̇=4310−9 per
cycle. This way the two-ion crystal is “dragged”[45] very
slowly (adiabatically) towards the instability atq=q* , which
is reached after about 2.83106 cycles. If we assume that the
trap is operated at 11 MHz[46], this corresponds to about
0.25 s real time. Once the instability is reached, the two-ion
crystal quickly breaks up(on the scale of about 200 cycles,
or about 18ms) and forms a cloud state[46]. In the cloud
state the two ions are no longer locked into a regular, crys-

FIG. 11. Paul trapN=3 resonance scenario.a=0.05, and(a) q
=0.412, (b) q=0.4137<q* , and (c) q=0.416. In analogy to Figs.
4(a)–4(c) the primary trapping island vanishes atq* . In contrast to
Figs. 4(a)–4(c) the three large, stable elliptic islands stay intact
before, during, and after the instability.
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talline configuration, but move quasi-independently on cha-
otic trajectories[47]. As shown in Fig. 13(b), the crystal
breaks up along the unstable manifolds of the critical point at
q=q* . Since it has already been demonstrated experimentally
that it is possible to tell crystals from clouds[46], our simu-
lation shows convincingly that the existence ofN=3 insta-
bility points can be tested experimentally.

We also ran simulations concerning theN=4 instabilities.
These simulations show that crystals dragged towards the

N=4 resonance lines also break up. Thus theN=4 instabili-
ties are also accessible to experimental testing.

VI. DISCUSSION

The Kingdon equations(1) and (39) are special cases of
the generalized Mathieu equation[11]

d2r

dt2
+ f1 − 2h coss2tdgrg = 0, s42d

which describes a whole range of charged-particle rf traps.
For g=1, e.g., we obtain the equation of motion(40) of the
single-particle Paul trap,g=−1 corresponds to the cylindri-
cal dynamic Kingdon trap(Sec. II), andg=−2 corresponds
to the spherical dynamic Kingdon trap(Sec. IV). The case
g=1 is not interesting, since it corresponds to the linear
Mathieu equation[37]. Since we foundN=3 andN=4 insta-
bilities for both the cylindrical(Sec. II) and the spherical
(Sec. IV) dynamic Kingdon traps, it is possible, though not
guaranteed(see remark at the end of Sec. II E) that island
collapse is a generic property of the generalized Mathieu
equation(42).

The instabilities of the cylindrical dynamic Kingdon trap
at h3

* andh4
* manifest themselves most clearly in the stability

function Sshd discussed in Sec. II. AlthoughSshd clearly
makes the case for instability ath3

* and h4
* , the curve itself

has to be taken with a grain of salt. First of all it is well
known [48,49] that in general the borders of stability islands
are fractal. Although the phase-space resolution chosen to
produce Fig. 3 is high[it took about one month of CPU time

FIG. 12. Paul trapN=4 resonance scenario.a=0.3, and(a) q
=0.6055,(b) q=0.605 654<q* , and (c) q=0.6057. In analogy to
Figs. 5(a)–5(c) the primary trapping island vanishes atq* . In con-
trast to Figs. 5(a)–5(c) the four large, stable, elliptic islands stay
intact before, during, and after the instability.

FIG. 13. Destruction of a two-ion crystal at the Paul trapN=3
instability at a=0.25, q=0.5712<q* . (a) Phase-space portrait for
a=0.25,q=0.5712 illustrating the destruction of the primary trap-
ping island.(b) Composite phase-space portrait showing the pri-
mary trapping island ata=0.25, q=q1=0.56 anda=0.25, q=q2

=0.59. Also shown is the phase-space trajectory of az-aligned two-
ion crystal dragged slowly fromq1 to q* , breaking up atq* along
the unstable manifolds of the fixed point atq* [see panel(a)] and
thus revealing the presence of theN=3 instability atq* .
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on a six-processor cluster computer to produceSshd shown
in Fig. 3(a)], the phase-space resolution is definitely not fine
enough to even begin to resolve the fractal borders of the
stable islands. Still, the fractal nature of the borders results in
some “roughness” ofSshd, which is visible in Fig. 3 from
abouth=6 on. For the purposes of this paper, however, an
ultra-accurateSshd is not necessary. For our purposes it is
enough to know the approximate behavior ofSshd with a
moderate resolution(for instance as chosen to produce Fig.
3), sinceSshd’s purpose was more than adequately accom-
plished when it alerted us to the possible existence ofh3

* and
h4

* . The subsequent investigation of the instability of the trap
at h3

* andh4
* in Sec. II does not at all rely onSshd, but does

instead rely exclusively on visual inspection of detailed
Poincaré sections, analytical arguments, and numerical com-
putations of resonance values.

We stopped our systematic survey ofSshd at h=10. This
raises the question of whether there may be further instabili-
ties for h.10. We think that this is unlikely because of the
following four reasons.(i) As mentioned in Sec. II E, linear
stability theory breaks downonly for the four special values
R=0,1/2,3/4,1. In thecase of the kicked Kingdon trap, we
have 0,R,8/99 [see Eq.(21)] for h.10, which implies
two things:(a) 0,R,8/99 does not include any of the ex-
ceptionalR values and(b) 0,R,8/99 is a subinterval of
0,R,1 for which the primary trapping island is stable(see
Sec. II E). Thus the kicked Kingdon trap is stable forh.10.
(ii ) Since we showed in Sec. III that the kicked Kingdon trap
is an excellent model for the cw-driven Kingdon trap, and
since the trapping efficienciesSshd are qualitatively similar
for the two traps[see Fig. 3(a) and 3(b)], we conclude that
since the kicked Kingdon trap is stable forh.10 [see(i)
above], so is the cw-driven trap.(iii ) Expanding Eqs.(13)
and(14) to fourth order in 1/h it can be shown that Eq.(15)
is stable forh.10. (iv) The largerh, the more accurate the
pseudopotential approximation[11,12,35]. This is so, be-
cause one of the conditions of the applicability of the
pseudopotential approximation is that the amplitude of the
micromotion is small compared with the “guiding-center” or
“macromotion”[35,50]. In our case the guiding center is the
geometric center of the limit cyclefrLstd , ṙLstdg, which is
stationary for fixedh. According to Eq.(A2) the geometric
center of the limit cycle is located approximately ath /Î2
and the amplitude of the micromotion, again according to
Eq. (A2), is approximately 1/Î2. Therefore,

amplitude of micromotion

amplitude of macromotion
<

1

h
→ 0 for h → `.

s43d

Therefore we trust the stability prediction of pseudopotential
theory forh.10.

Some preliminary surveys of the phase space of the
kicked and the cw-driven cylindrical dynamic Kingdon traps
indicate that both traps are completely unstable ath3

* , i.e., at
h=h3

* their phase space does not seem to exhibit any stable
islands whatsoever. A system without any stable islands is a
hyperbolic dynamical system if certain additional conditions

are met [28,34]. Only very few hyperbolic systems are
known, and even fewer model real physical systems. We
know of only one such system, where the absence of stable
islands was proved analytically: the kicked one-dimensional
hydrogen atom[51,52]. The dynamic Kingdon traps ath3

*

may be additional candidates. Numerical evidence, however,
is not proof. If the absence of islands ath3

* is indeed
confirmed, a proof may be provided using the methods
in Refs.[51,52].

Compared with the Paul trap the instabilities of the dy-
namic Kingdon traps are particularly devastating. In the Paul
trap encountering anN=3 or an N=4 instability merely
means the breakup of an ordered ion configuration; the ions
themselves remain trapped. In the dynamic Kingdon traps,
however, encountering anN=3 or anN=4 instability means
the complete loss of the particle from the trap.

As shown by the insets of Fig. 3 the shrinking and reex-
pansion of the primary trapping island of the cylindrical dy-
namic Kingdon trap takes place in a narrowh interval of
Dh<0.1. In order to resolve it, anh resolution of dh
=0.01, as chosen in our calculations, may be desirable. The
question arises whether a resolution ofdh=0.01 can be re-
alized experimentally. Using the relation[12]

h =
Vac

2Vdc
, s44d

whereVac and Vdc are, respectively, the ac and dc voltages
applied to the trap, the necessaryh resolution translates into
voltage resolutions. In order to answer the question of
whetherdh=0.01 can be implemented experimentally, we
use the example of a possible experimental setup for trapping
Mg+ ions as discussed in Ref.[12]. In this example it is
assumed that the trap is operated with a dc voltage ofVdc
=100 V. At h3

* , according to Eq.(44), this translates into
Vac=723 V. Keeping Vdc fixed, dh=0.01 translates into
dVac=2 V. Changing a voltage of about 700 V in steps of
2 V is certainly technically feasible. It seems to us that even
finer resolutions should be technically possible, which would
allow an experimental test of the existence and locations of
the instability points in the cylindrical dynamic Kingdon
trap.

VII. SUMMARY AND CONCLUSIONS

In this paper we investigated in detail recently discovered
instabilities in several types of rf traps including the Paul
trap, the most widely used and most important rf trap. We
showed that the instabilities are due to island collapse, i.e.,
the vanishing of the primary trapping island due to a colli-
sion of the center period-1 fixed point of the primary trap-
ping island with a set of collapsed, unstable period-3 and a
set of collapsed, unstable period-4 fixed points, respectively.
We computed accurate values of the critical control param-
eters for four different types of rf traps, the cw-driven cylin-
drical and spherical dynamic Kingdon traps, the kicked cy-
lindrical Kingdon trap and the Paul trap. For the cw-driven
cylindrical dynamic Kingdon trap we computed analytical
approximations toh3

* and h4
* which are in good agreement

with the exact values of the critical control parameters in this
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case. In the case of the kicked trap we were able to compute
exact analytical expressions for the critical control param-
eters where the instabilities occur. We also observed and ex-
plained reduced stability of the kicked and cw-driven cylin-
drical dynamic Kingdon traps at additional valueshN

R, N
ù5 of the traps’ control parameterh. For experimentalists
knowledge of the exact positions of the dynamic instabilities
of rf traps is essential for successfully operating these traps
in the laboratory. For theorists the existence of the dynamic
instabilities in rf traps opens up plenty of possibilities for
further research into the nonlinear properties of these traps. A
case in point is our preliminary numerical result on the ab-
sence of stable islands in the dynamic Kingdon traps ath
=h3

* , which, if confirmed, provides the opportunity of adding
another member to the very small set of experimentally rel-
evant completely chaotic, hyperbolic systems.
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APPENDIX: LIMIT CYCLE

Since the limit cyclerLstd of the cylindrical dynamic
Kingdon trap is so important for organizing the phase-space
dynamics of this trap, we present here a high-accuracy ana-
lytical approximation ofrLstd. As shown in Fig. 2 the limit
cycle determines the fixed point of the primary trapping is-
land. Therefore the calculations presented here are also of
direct relevance for a high-accuracy analytical calculation of
the position of the center of the primary trapping island.

SincerLstd is p-periodic, and since Eq.(1) is symmetric
undert→−t, we expand it into a Fourier-cos series

rLstd = o
m=0

`

Amcoss2mtd. sA1d

Keeping only the first two terms in Eq.(A1) defines the
truncated approximationrL

s2dstd. InsertingrL
s2dstd into Eq. (1),

comparing terms, and selecting the solution withrL
s2dstd.0

for all t, we obtain

rL
s2dstd =

h

Î2
−

1
Î2

coss2td. sA2d

This solution was already computed in Ref.[11] and was
studied in the presence of damping in Ref.[32]. It is also the
basis for computing the analytical approximations toh3

* and
h4

* in Sec. II D. Forh=5 the approximate limit cyclerL
s2dstd is

shown in Fig. 14(long dashes). Although only two terms
were kept in Eq.(A1), rL

s2dstd is surprisingly close to the exact
limit cycle (full line in Fig. 14).

A high-accuracy approximation ofrLstd is obtained by
keeping the first three terms in Eq.(A1). Inserting

rL
s3dstd = A0 + A1 coss2td + A2 coss4td sA3d

into Eq.(1), we obtain the following nonlinear algebraic sys-
tem of equations for the expansion coefficients:

2A1
2 + 8A2

2 = 1, 2A0A1 + 5A1A2 = − h, 8A0A2 + A1
2 = 0.

sA4d

This system of equations is easily solved forA1. Defining
x=A1

2 we obtain the cubic equation

144x3 − 120x2 + s25 + 16h2dx − 8h2 = 0. sA5d

This equation is solved using Cardan’s resolution formulas
[37]. Following the procedure outlined in Ref.[53] we obtain

p =
1

27
Fh2 −

25

48
G, q =

1

81
F125

576
− h2G ,

u = f− q + Îp3 + q2g1/3, v = −
p

u
, x = u + v +

5

18
,

A0 =
x

Î8 − 16x
, A1 = − Îx, A2 = −Î1 − 2x

8
. sA6d

Sincep3+q2.0 for hù3, Eq. (A5) has only one real solu-
tion [37,53] and therefore Eq.(A6) is the only solution of
Eq. (A5) of interest in the present context. Using Eq.(A6) in
Eq. (A3) we obtain an explicit analytical result forrL

s3dstd
(short dashes in Fig. 14), which is almost indistinguishable
from rLstd on the scale of Fig. 14. The inset in Fig. 14 shows
a magnification of the limit cycles in the vicinity ofr =2.85.
The inset shows that even under strong magnification there is
hardly any difference betweenrLstd and rL

s3dstd. In fact, ath
=5, the relative errorufrL

s3dstd−rLstdg / rLstdu,7310−4 for all t
and ufṙL

s3dstd− ṙLstdg / ṙL
smaxdu,6310−3 for all t, where ṙL

smaxd

=maxt u ṙLstdu. The error of the velocities is normalized to the
maximum velocity sinceṙLstd=0 at the turning points of the
limit cycle.

FIG. 14. The limit cyclerLstd at h=5 (full line) and two of its
approximations. Long dashes: two-harmonics approximationrL

s2dstd.
Short dashes: three-harmonics approximationrL

s3dstd. Inset: magni-
fication of the limit cycles in the vicinity ofr =2.85.
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