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Using standard tools of nonlinear dynamics we analyze recently discovered instabilities of radio-frequency
charged-particle traps. In the cw-driven cylindrical Kingdon trap the instabilities occur at the two vélues
=3.6130467... and72=4.431 124 4. .. of the trap’s control parametgrAnalytical estimates based on the
theory of Mathieu functions predictyy=1y(363-3272)/ (6676 —4872)=3.692 392 2... andy,=(\/2)
X[(363-3272) /(11089 +48r2-121)|“2=4.496 546 6. ... The kicked Kingdon trap, an analytically solvable
model, predicts7;=21105=3.415 650 2... andj,=\17=4.123 1056.... We show that similar instabilities
occur in the two-particle Paul trap and the cw-driven spherical Kingdon trap.
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I. INTRODUCTION The purpose of this paper is to analyze the particle dy-

One of the most fruitful ideas of modern physics is theNa@Mmics in rf traps using standard techniques of nonlinear
isolation and levitation of a countable number of chargeddynamics and to predict the existence of experimentally veri-
particles in electromagnetic trajpg]. An important class of fiable instabilities in the Paul trap and the two dynamic
charged-patrticle traps are the radio-frequency traps. Its moingdon traps. Knowledge of these instabilities is of utmost
celebrated member, the Paul trgd], was invented in the importance for successfully operating these traps in the labo-
1950s[3] and is still one of the most important laboratory ratory.
tools for the trapping of atomic and subatomic charged par- The plan of this paper is as follows. In Sec. Il we start
ticles. A quick search of the database INSPEC revealed thatith a detailed analysis of the cylindrical dynamic Kingdon
over the past five years no fewer than 200 papers were pultrap. We chose this trap as the starting point of our presen-
lished on the Paul trap and its applications in fields rangingation because it has only a single control parameter and its
from squeezed statd#,5 and cavity quantum electrody- dynamics is already nonlinear for a single stored particle.
namics[6] to novel frequency standardg,8] and quantum This fact allows a particularly clear exposition and the direct
information processing9,10. Radio-frequency(rf) traps  application of standard nonlinear dynamics tools. In Sec. llI
primarily suited for the experimental and theoretical investi-we present the kicked dynamic Kingdon trap. We show that
gation of nonlinear dynamics are the cylindri¢al-13 and  the kicked trap is an excellent model for the cw-driven dy-
the spherica[13,14 dynamic Kingdon traps. Since rf traps namic Kingdon trap. Moreover, due to the impulsive drive of
are indispensable tools in countless physics laboratoriedhis trap, its dynamics is exactly described by an area-
throughout the world, it is important to know their proper- preserving two-dimensional mapping whose instabilities can
ties. With the exception of the ideal single-particle Paul trape computed analytically. They are shown to agree well with
which is integrable both classically and quantum mechanithe exact instability points of the cw-driven trap. In Secs. IV
cally [15,14, all rf traps are conceptually equivalent: they and V we show that the instabilities we found in the cylin-
are periodically driven nonlinear oscillators. In many casesgrical dynamic Kingdon trap are universal in the sense that
especially if only a few particles are stored simultaneously irthey also manifest themselves in the spherical dynamic
the traps, it is possible to describe the trapped particles’ dyKingdon trap(Sec. IV) and the Paul tragSec. V). In Sec. VI
namics by two-dimensional area-preserving mappings. Thes&e discuss our results. In Sec. VII we summarize our results
mappings exhibit universal propertigs7,18 such as bifur- and conclude the paper. In the Appendix we present a high-
cations and low-order resonances which point to the possiblaccuracy approximation of the limit cycle of the cylindrical
existence of dangerous universal instabilities of rf traps. Indynamic Kingdon trap which may be used in future investi-
deed we recently found two pronounced instabilities of thegations for a more accurate analytical calculation of the pre-
cylindrical dynamic Kingdon trapg[19,290 which can be dicted instabilities of the cw-driven cylindrical dynamic
traced back to well-known low-order resonances and bifurKingdon trap.
cations of two-dimensional area-preserving m4fpg,18.

We emph{:\size that the instabilities disc_ussed_ .in this paper || v INDRICAL DYNAMIC KINGDON TRAP

have nothing to do with the well-known instabilities caused

by field defects resulting in nonlinear coupling between dif- The Kingdon trap[23,24 is the tool of choice for the
ferent degrees of freedofd1,22. The instabilities discussed investigation of topics ranging from laboratory models of the
in this paper are single-degree-of-freedom dynamic instabilisolar systenj25] to the precise measurement of the lifetimes
ties of the ideal traps which can be explained as due tof metastable levels of heavy iorj26]. A variant of the
universal instabilities of the associated area-preservinglingdon trap, the dynamic Kingdon trgf1,132, is the focus
maps[17,1§. of this section. As shown in Fig. 1 the hardware of this trap
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ac/dc

FIG. 1. Sketch of the cylindrical dynamic Kingdon trap. A su- -1 |
perposition of ac and dc voltages is applied between a rectilineat
wire and a surrounding cylindrical conductor resulting in dynamical -1:5 |-
trapping of a charged particle in the free space between the wire an :
the cylinder. 2 Py 3 pyn

Ins ginswr?]mpgﬂs]mp“c;ty'tillinn pnrn\(;\;ﬁ,le thﬁ trﬁz ((:jOESIStS O];] FIG. 2. Multiple-exposure Poincaré section fgr5 illustrating
othing more than a rectiinea € surrounded by a cong, . organization of the phase space of the dynamic Kingdon trap
ducting cylindrical surface with a superposition of ac and dc L ;
. . . around its limit cycle(full line).
voltages applied between them. Its simple design not-
withstanding, the classical dynamics of a particle stored

in the dynamic Kingdon trap is nonline4fi1,12,27 and A. Working principle of the dynamic Kingdon trap
exhibits many of the properties of classically chaotic systems The dimensionless equation of motion of a charged par-

[11,12,27,28 N L ticle in the electric field of the dynamic Kingdon trap is
Historically the cylindrical dynamic Kingdon trap was given by[11]

first investigated at Freiburg Universif29,3Q, where it was
used as a mass-selective ion source. The results of this in- d%r 1

vestigation, however, were never published in the open lit- Pl -[1-29 005(2'[)];. (1)
erature[31]. In Ref. [11] this trap was rediscovered and

proposed as a convenient microlaboratory for the investiwheret is dimensionless time, is the dimensionless distance

gation of classical and quantum chg@s] and ion crystall-  of the particle from the wire, and; is the dimensionless

ization [12]. control parameter. Foi> 7, ~3.125 (1) has am-periodic
For the past eight years the nonlinear dynamics of the tragolutionr(t), i.e., a limit cycle[34]. A good approximation

has been investigated in great detail both theoreticallfor r (1) is given by(see Ref[11] and the Appendix
[11,12,14,27,3R and experimentally{13,33. Therefore it

came as a surprise when it was discovered only recently 7 1

[19,2Q that voltage settings exist which render the trap com- = _E - ’_5005(2'()- (2
pletely unstable. The detailed investigation of these instabili- K v

ties is the focus of this section. For a generic choice of> 7, the limit cycler,(t) is stable.

In Sec. IlA we present the equation of motion of a As an example we computed the limit cycle fge5. It is
charged parthle in the dynamic Kingdon trap and_, with th?shown as the full line in Fig. 2. Ap= 7, the limit cycler, ()
help of numerically computed phase-space portraits, explaifindergoes a period-doubling bifurcation with further bifurca-
quahta_twely the trapping mechanlsm._ In Sec. Il B_we_ presentions at7,~2.938,7,~2.917,... [11]. The period-doubling
a detailed survey of the size of the primary trapping island 0fcengario fory< 7, has already been investigated in detail
the dynamic Kingdon trap. This survey points to the exis-(11 27. This is why in this paper we focus our investigation

tence of fundamental instabilities of the trap and yields nu+; Eq. (1) on the rangey= 3, which includesy, but none of
merical estimates for the critical values of the trap controlne giner bifurcation points’.

parameter at which the instabilities occur. In Sec. Il C we use |, order to gain further insight into the working principle

Poincaré sections to reveal the origin of these instabilitiesys the dynamic Kingdon trap, we investigate its phase-space
the complete collapse of the primary trapping island due t0 &,cture. Phase space is explored with the help of phase-

collision between the trap’s first-order fixed point and a Se%pace portraits. They are produced by turning @ginto a
of third- or fourth-order fixed points. A resonance mECha'mapping

nism, well known in the theory of two-dimensional area-

preserving mappinggl7,1§, allows us in Sec. 11 D to com- M _(7): [r(0),i ()] [r'(t+),i’ (t+ D] (3)
pute the critical values of the trap’s control parameter

numerically with high precision and to obtain accurate anaThe mapping?3) is called a “stroboscopic mapping” since it
lytical estimates. In Sec. Il E we establish a connection beis constructed by examining the solutions of [Eb). at regu-
tween the instabilities of the dynamic Kingdon trap and gendarly spaced “snapshots” a time intervabpart. Usuallyr is
eral results in the theory of two-dimensional area-preservinghosen to be equal to the period of Et), i.e., 7=. In this
mappings. case the mappin) is invertible and we identify
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M.A(7) = M(3). (4) ’ —

Occasionally, however, other strobing timesurn out to be st or (a) 1
useful(see discussion belgw S(n) | S(n) m m

As a first application of the stroboscopic mappii3y we 5r o2 | i T
show that the phase-space dynamics of @gis organized '
aroundr(t). This is demonstrated in Fig. 2 by means of a 4T \L \L i
“multiple-exposure” Poincaré section produced on the basis | 0 . | ]
of Eq. (3) with 7==/8 in the following way. We solve Eq. 3 35 n 4 45
(1) for 121 different initial conditions(r,,r,)=[2+(m o L 4
-1)0.3,-2+{n-1)0.4], m,n=1,...,11, and strobe the re-
sulting phase- space trajectories é‘f ka+(j-1)7/8, k L /S ng o nft ol 7

=1,...,500,j= ,8. Figure 2 shows that for eagtwe ! . & L Ll A A
obtain an island of stability organized around the limit cycle s 4 5 6 p 7 8 9 10

r_(t). This explains the trapping mechanism of a charged
particle in the dynamic Kingdon trap. Startedtatd, some-
where in the leftmost island of stability, the phase-space tra-
jectory of the particle is carried clockwise along the limit 8
cycle from one stable island to the next. As a result, the
particle is trapped forever, but executes an oscillatory motions(n)
in bothr andr, which is known as itgnicromotion[35]. If a r
particle is launched outside of the stable island in the chaotic 4
sea, it will, for some time, follow a transiently chaotic tra-
jectory until it hits the wire or the cylinder, discharges, and
falls out of the trap. 3l
The stable phase-space island whose center is pierced k
the limit cycle is called theprimary trapping island Since
Eqg. (1) is nonlinear, there exist, in general, secondary trap- 1
ping islands surrounding the primary trapping island. These

islands, however, are generally smaller than the large pri- 3 4 5 6 n 7 8 9 10
mary trapping island, and not of much practical importance
for trapping. FIG. 3. The stability functiorS, a measure of the phase-space

area of stable islands, as a function of the control paramgfer
the cw-driven traga) and the kicked tragb). The insets show that
for both trapsS(#) vanishes twice in the interval87=<10 at»
Trapping in the dynamic Kingdon trap is a nonlinear ef-values, calledy; and 7, (marked by arrows indicating complete
fect which depends decisively on the existence of stable |S|nstab|I|ty of the traps at these critical control parameters. The ar-
lands in phase space. In this respect the dynamic KingdofPWs at7R, N=5, mark they values where the rotation frequency
trap is fundamentally different from the Paul trép-3] or of the center of the primary trapping island is in resonance ith
the Penning trai36], in which, in principle, particles can be the frequency of the trap’s ac voltage afiml the kick frequency of
stored irrespective of their positions and momenta. We defin&'® ap-
the sum-totalS(#) of all stable phase-space areas of &g.
as thetrapping efficiencyof the dynamic Kingdon trap for 7 resolution of67=0.01 we determined th& #) vanishes at
control parameter setting. Since, as mentioned above, sec- x x
ondary islands are usually much smaller than the primary 73~ 361, 7y=4.43. )
trapping islandS(#) is also a good approximate measure of As is barely discernible from the inset of Figia but con-
the phase-space area of the primary trapping island. firmed by additional detailed numerical calculatiorgy)
In order to comput&as a function ofy we computed 701 does not vanish a= 7,, the location of the first bifurcation
stroboscopic Poincaré sectiorgstrobing timest=km, k  of the limit cycle. Thuszy; and 7, are indeed the only values
.,1000 of Eq. (1) for » values ranging fromy=3 to  in the range 3< »=<10 whereS(7) vanishes. A vanishinG
7=10 in steps 0f67=0.01 and determined the stable phase-means that no stable trapping is possible. Therefore the trap
space areas numerically with a phase-space resoluifon s unstable aty; and 7,. A detailed examination of phase-
X AF of better than 2 10°*. The result is shown in Fig.(8.  space portraits presented in the following section will shed
We see that from abouy=4.5 onS(7) is positive and in-  more light on the origin of these instabilities.
creasing on average. This means that in thisegime the
dynamic Kingdon trap provides stable trapping of charged
particles. However, as shown by the inset of Fig)3(7) C. Island collapse
vanishes twice in the interval<37<4.5 at two critical con- In this section we show that the instabilities of the trap at
trol parameters, which we caﬂ; and 772. On the basis of our 77*3 and 772 are due to the complete collapse of the primary

B. Trapping efficiency
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trapping island of Eq(1) at these two critical values of the T T T T
trap’s control parametey. Inspectmg many phase-space por-

traits of |\/|(7]) in the vicinity of 7, we found that asp 0.01 ]
approaches;3 a set of unstable period-3 fixed points move in 0.005 i
on the center of the primary trapping islag@period-1 fixed ) '
point) squeezing the primary trapping island to zero phase- ¢ 0 .
space area ah= 7;3 A similar mechanism is at work in the

vicinity of 7;4 Here a set of unstable period-4 fixed points -0.005 4
approaches the prlmary trapping island squeezing it to zero

phase-space area at 1;4 Close visual mspectlon of a Iarge -0.01
database of phase-space plots in the V|C|n|ty779fand 174
allowed us to improve the accuracy of E§). On the basis

of our graphical material we determined that the primary 2
trapping island shrinks to zero phase-space area at
73~ 3.613, 7,~4.431. (6) 0.01 .
. . 0.005 -
These values are consistent with EB).
The island collapse mechanism discussed above is illus- 7 0 i
trated in Figs. 4 and 5. Figure 4 shows a sequence of three
phase-space portraits fe=3.57(a), 7=3.613~ 7;; (b), and -0.005 .
7n=3.65(c). The three panels of Fig. 4 show that the size of
the primary trapping island is entirely determined by the lo- -0.01 .
cation of a set of unstable period-3 fixed points of the stro-
boscopic Poincaré mapping. As shown in Fig. 4, the primary 5

island is indeed squeezed to zero areay*ﬁas the unstable
period-3 fixed points move in to collide with the primary
period-1 fixed point aty,. The “triangle” defining the bound-
aries of the primary trapping island foj close to 773, but

n+ 7;3, is an example of a homoclinic cyc[84] formed of

the degenerate stable and unstable manifolds of the unstable
period-3 fixed points.

Figure 5 illustrates the collapse mechanism 7ét As
shown in Fig. 5, a set of collapsing period-4 fixed points
squeeze the primary trapping island to zero phase-space area
at »= 772. The instability mechanism based on a collapsing
set of unstable period-3 and period-4 fixed points explains 0.01
our notation for the two criticaly values.

0.01
0.005 "
0

-0.005

1.8 1.84 188 192 196 2
D. Critical control parameters r

As discussed in the preceding section, the reason for the FiG. 4. lllustration of the collapse of the primary trapping island
instabilities of the trap aty; and 7, is the caging of the of the cylindrical dynamic Kingdon trap in the vicinity of= ;. (a)
primary trapping island by unstable, third- and fourth-order;=3.57,(b) 7=3.613< 7, (c) 7=3.65. A set of unstable period-3
fixed points, respectively, which collapse to a point at thefixed points(7< 7,) (a) collapses aty= 17, (b) squeezing the pri-
two critical control parameters. Fojf close to 7]3 a phase- mary trapping island to zero phase-space area. The primary trapping
space trajectory started &0 inside of the primary trapping island reemerges fop> 7 (c).
island will have twisted by an angle of approximateby/3
around the limit cycle | (1) att=m owing to its proximity to
the third-order fixed points. A= 7;3 the twist angle will be
exactly 2rl3 due to the fact that at;3 the center of the
e e, i Inatize 5, obiaing tefolwingsystem o e
use to compute;3 and 774 according to the foIIowmg proce- tons for £(t) andp(t):
dure. We lineariz&1) aroundr (t) and determiney; and 7,
according to the condition that the twist angle of the linear- )
ized mapping equals2 3 and 27/4, respectively. Defining &) =p(b),

r=r )+ &1, rM)=r(0+p), (7
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only on » and are determined by a two-step process in the
0.04 | following way. Starting with&(0)=1, p(0)=0, and integrat-
ing Eq. (8) over one cycle yieldsA;=&(m), Ay =p(m).
0.02 | Starting with £(0)=0, p(0)=1 yields A;,=&(m), Ayy=p(m).
L Since the primary trapping island is an elliptical island, the
T ok eigenvalues ofA(#) are of the form\y 5(n)=exdie(7)],
where ¢(7) is the twist angle. Solving the equatiogg)
0.02 | =27/3 and¢(7n)=2m/4 numerically yields
0.04 7,=3.6130467..., 7,=4.4311244..., (10
respectively. These values are consistent with (By.
23 The pronounced local minima & 7) for %> 7, (see Fig.

r 3) can be explained qualitatively with the same mechanism
that gave rise to the instabilities gt and 7,. The first pro-
nounced minimum ir§(7) to the right of 7, is caused by a
set of unstable period-5 fixed points caging the primary trap-
ping island; the next minimum is caused by a set of unstable
period-6 fixed points caging the primary trapping island, and
so on. In complete analogy with the mechanismyaand 7,

the stable and unstable manifolds of the pembdixed
points form a homoclinic cycle in the form of a regular poly-
gon, which completely confines the primary trapping island.
In the vicinity of the minima the polygons shrink and reex-
pand. But forN=5 their areas never shrink to zero resulting
in mere minima ofS(#) instead of zeros. We call this phe-
nomenonincomplete island collaps&he reason for incom-

T plete island collapse is well understood and discussed in de-
tail in Sec. Il E.

If this picture is correct, we should be able to use the
resonance method and find an approximate correlation be-
tween the» values where the twist angle of the primary
trapping island equals72 N, N=5,6,..., and thdocations
of the minima in Fig. 3. Solving the equatiasn(n) =27/N,
N=5,6,..., as we didbove forN=3,4, weobtain the reso-
nancez’'s nﬁ marked with arrows in Fig. @). As expected,
the correlation between the minima and the arrows is best for
the deepest minimgclosest to complete island collapsand
gets progressively worse for largerwhere the minima are
far from S=0 and then start to vanish altogether. This shows
23 24 2.5 2.6 27 conclusively that, even in the case of incomplete island col-

T lapse forN> 4, near-resonance is the physical reason for the
minima in (%) resulting in reduced stability of the trap.
o . - o _ We can even explain the small dips that occur close to the
dynamic Kingdon trap in the vicinity oh=17,. (@) n=4.41,(b . . .
:)2.431z 7;*4, ?c) 7;:4.34. A set of uynstZlbIZ4 pe?io?j-4 fierj )pgints local maxima ofS(7). The. dips are dqe to hlgher-order reso-
(7<) (@ collapses aty=1,, (b) squeezing the primary trapping NanCes. where the winding numberis a rat|.onal number,
island to zero phase-space area. The primary trapping island ré-£- v=M/N. We checked that the largest dips are due to

0.04

0.02

-0.02

-0.04

0.04 (C)

0.02

-0.02

-0.04

FIG. 5. Collapse of the primary trapping island of the cylindrical

emerges for> 7, (c). =2/(2N+1) resonances. In particular we checked that the
dip occurring aty~3.95[see inset of Fig. @] is due to a
1 - 27 cog2t) 2/7 resonance, and the dip at=4.77 is due to av=2/9
p(t) = Tf( ). (8 resonance.
L Using the same general procedure, we now compute ana-
Integrating Eq.(8) from t=0 to t=7 defines the linearized lytical approximations ton; and 7/’;. Using the approximate
one-cycle mapping expression(2) for r (t) results in
& ) B (f) . [2 - 47 coq2t)]
=A - = =0.
(p, (7) 0/’ 9 & (17— cod20) §nH=0 (11)

where (¢',p’) are position and momentum &t when  For large # this is a Mathieu equatiof37]. Since we are
starting with(&,p) att=0. The matrix elements of depend interested inz values that are larger than 3, but still not
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asymptotically large, we start with a Fourier expansion of the . N 363 - 322 112
; . : ; =—| — =4.4965466....
drive term in Eq(11) keeping terms up to order d@), i.e., M=, /1089 + 4872 - 127
2 — 4y codq2t 20
2= OS2 _ 4B cos2) + -, (12) (20
[7—coq2t)] Both values compare favorably with the numerically exact
values(10).
where
1 (271 - 277 cogx) 27 E. Connection with bifurcation theory of nonlinear mappings
A:;JO [7-cos R " [#-1F"2 (13 When they were first discovered about two years ago
[19,2Q the instabilities of the dynamic Kingdon trap &
and and 7;2 were quite surprising and unexpected, because nearly
a decade of research, both theoreticHl,12,14,27,3Rand
2 (%™ 1 - 29 co¥x) experimenta[13,33, did not find so much as a hint of them.
B= ;J mcoix)dx In retrospect, however, when the cylindrical dynamic King-
0

don trap is put into the general context of nonlinear map-
J— 4 pings, the instabilities ap; and 7, find a natural explanation.
=-8{n- \’72 -1 - [Tlslz (14) Let us define the residur of the linearizationA [see Eq.
K (9)] of the mappingM [see Eqgs(3) and (4)] according to

The integrals in Eqs(13) and (14) were computed using [17]

formula 3.6614 of Ref[38]. Replacing the drive term in Eq. R=12-Tr A = sir? 21
(11) with its expansion(12) results in a Mathieu equation al rA(m]=sim(a), (2Y)
which, in standard forni37], is given by where Tr is the trace and is the “winding number.” The
winding numbery and the twist angle are connected in the
&(t) +[a-2q cog2t)]&(t) = 0, (15)  following way:
where a=-A and g=B/2. The Mathieu equatioifl5) has y= i, (22)
Floquet solutions of the form 2m

Evaluated at the position of the primary fixed pointhf v
counts how many times the primary trapping island rotates
. - . - around the fixed point during the mapping tirre

where®(t) is perloo!lc andu is the characteristic exponent The primary fixped point oi%/l is stabﬁ)g fo% GR<1. Itis
[37]. For ?ma:cla, as is the case here, we may use formula,qiape folR< 0 or R>1. SinceR is computed on the basis
20.3.18 of Ref[37], of the linearizationA of M, this means that in general linear

& () =X (1), (16)

2 o2t 2 stability theory is enough for investigating the stability of the
cos ) = (1 _am am ) _ q_{l +a<1 _ _> primary fixed point oM. However, it is well knowr{17,1§
2 24 that linear stability theory may fail foR=0,1/2,3/4,1, and
2552 only for these four exceptional values.
4 . .
+ } (%_ﬁ >+ - (17 In the case of the dynamic Kingdon tré&p=0 does not

occur for finite , R=1/2 corresponds to the=1/4 reso-
nance atp= 77;, R=3/4 corresponds to the=1/3 resonance
at »= 77*3, and R=1 corresponds to the first bifurcation at
U/it
In the theory of general nonlinear mappings the phase-

X e X -~ gpace scenarios f&*=1/2 andR=3/4 have been studied in
Eq' (17) ;S ’;oorﬂ:fflc;léltrtci)nsi)lve analytically. But expanding detail [17,18. Indeed, quite generally for nonlinear map-

g.(17) to fourth orde h, pings, in the vicinity ofR=3/4 the scenario illustrated in

on? 1 {2_774 121772} s Fig. 4, and forR=1/2 thescenario illustrated in Fig. 5 un-

to connecta and q with w. For the 77; resonance we have
u=2/3 and for ther;Z resonance we haye=1/2.Sinceu is
known anda,q are functions of» only, Eq. (17) can be
solved for 7 to determinez, and 7,. However, as it stands,

codum =1-"—F+—=; folds. Thus island collapse is a general, universal phenom-
VA enon, not restricted to rf traps. It occurs, e.g., in the annulus

) i o . billiard [39] and the gravitational wedge billiafdQ].

we obtain a quadratic equation in 4% which can be solved Even the approximately quadratic behaviorSof) in the

immediately. Foru=2/3 weobtain vicinity of 7, and the approximately linear behavior $f)
o, in the vicinity of 172 [see inset of Fig. @)] can be explained.
ma=T /%5&692 3922... (19 According to Ref.[41] Appendix 7, the unstable period-3
667\6 — 4872 fixed points approach the stable period-1 fixed point with

phase-space coordinates proportional|tp—77;|, i.e., the
and foru=1/2 weobtain phase-space area of the caging triangle in Fig. 4 is propor-

3 16
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tional to (7—7)% consistent with the approximately qua- ) Ta B
dratic behavior of3(7) close ton’; as shown in Fig. @). In r=rsmpr oo !
the case of the instability af, the linear dimensions of the 2r+mp+ or

caging rectangle are proportional tg- 774|1’2 [41]. There-
fore the phase space area of the caging rectangle behaves

like |7— 774| in the vicinity of 7;4, consistent with the linear p=p+—- 2p
behavior ofS(7) close toz, [see Fig. 8)]. 2r
An important remark is now in order. Although all rf traps r+mp+ -
correspond to some nonlinear mappiMyg it is not guaran-
teed thatM (i) has a(stablg period-1 fixed point at all and + a _ (26)
(i) thatR=1/2 orR=3/4,leading to trap instabilities, exist e 2mB
at all. Indeed plenty of mappings are knoy?] which do 2r+2mp+ T T
not have stable period-1 fixed points, and in which scenarios 2r+mp+ o

akin to those displayed in Figs. 4 and 5 do not exist. There-
fore the existence dR=1/2 andR=3/4 instabilities cannot  The first-order fixed poin(trﬁk),pf(k)) of the kick map(26), the

be guaranteed priori, just because traps correspond to non-center of the primary trapping island, is located at
linear mappings. In other words, if some rf trdpexhibits

R=1/2 and/orR=3/4 instabilities, this is a nontrivial prop- p = E( —1)= a ® =0 27)

erty of T. Therefore, the purpose of the remainder of this f7q K 2’ Pr '

paper is to show that additional rf traps exist which exhibit__ ] .

R=1/2 andR=3/4 instabilities. This can be compared with the locati¢ri™ , pi*") of the
fixed point of the cw-driven trap. According to ER) we
have

I1l. KICKED KINGDON TRAP - (
cw) _ _— cw)
In this section we study the kicked Kingdon trap. It is i (77 D Py ' (28)
obtained by replacing the smooth drive in the force term of
Eq. (1) with a series ofs function kicks according to 'tl)'he relative error between the two is constanyiand given
y
— 1+ 27 cog2t) ~ gm) - Baﬂ(t - 7—27) + ga,,(t - m), o pen | 5
o = -1, (29
r 4
(23 f
; which amounts to about 11%. This is a good accuracy given
wherea and are given by the simple kick approximatiof23).
T T The phase-space dynamics of K and the kick map
@= 5(77' b, B= E(’7+ D), (24 (26) are qualitatively the same. We illustrate this in Figh)3
which shows the trapping efficienc(#) for the kick map
and (26) computed in the same way as for the cw-driven trap.
Comparing Figs. @) and 3b), we see thaS(7) is indeed
s.(t) = 2 S(t-mm) = 2 g2imt (25)  Qualitatively the same. In particule®(7) of the kick map
- T =—o0 also has two zeros close g and »,. We call themz;(kick)

and 7,(kick), respectively.

In the case of the kick map we can prove analytically that
the mechanism responsible for the instabilitieszatkick)
and 7,(kick) is in fact due to a collision between the center
of the primary trapping island and a degenerate set of un-
stable period-3 and perlod -4 fixed points, respectively. Fo-
cussing on the caseyg(klck) we compute the third-order

is the 7r-periodic 6 function. For the choicé24) the left- and
right-hand sides of Eq25) are identical up to terms c().
Although Eq.(23) could equally well be written agd,(t)
-B6,(t—m/2), we chose the particular forrf23) since it
indicates more clearly the proper construction of the one-
cycle kick map, which starts with a kick of strength/2
followed by free motion of duratiodt=7/2, followed by a . . : .
kick of strgngth B, subsequent free motion of duratia){n fixed point of Eq.(26) by starting atlr,0) and iterating26)
==/2. and comple,ted with a kick of strenghl 2. The map- three times. The condition to return ¢o, 0) after three itera-
ping thus constructed is different from the mapping studiedonS leads to the equation

in Ref. [14]. The choice(23) makes the resulting one-cycle [2 o } [x(r) o ]
kick map more symmetric and places the center of the pri- F(r)=[x(r)=r]| — - | —+—
mary trapping island gh=0, where it occurs for the continu- m 2rx(r) m 2X()
ously driven(cw-driven trap. X2(r) a
The one-cycle mapping defined by E@®3) takes the - 7+1+7—T:0, (30)
phase-space poifit,p) att=0 to (r’,p’) att=. It is given
explicitly by where
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Ta 2mpr
=r+— - . 1 R(7) = .
Xr)=r r 4+ ma (=) ) 7-1

(37

For 7 close top;(kick) F(r) is locally quadratic. One of its Since Rizy(kick)]=3/4 (see_Sec. II E; it can be checked
zeros corresponds to the period-1 fixed pointat/2, the ~ immediately thatz(kick)=y105/3, and sinceR] 7,(kick)]
other to the period-3 fixed point. A collision of the two fixed =1/2, 774(k|ck)—\17 This confirms Eqs(33) and (34) to-
points occurs if the zero at=a/2 becomes degenerate, i.e., gether with the equivalence of the resonance method and the
F’(a/2)=0. When this happens, it also determines the exactixed point collision method.

value of n;(kick). The conditionF’(a/2)=0 yields In the case of the kicked trap the resonanoﬁékick) for
N=5 are obtained analytically by solving E¢R1) for v
- 1272 27, 167° .\ 47 - af ~0 (32) =1/N, N=5 with R given by Eq.(37). This leads to the
af  a B (a+2mB equation
12
This equation can be solved farand yields R= [ + L] (38)
N
1 -cog2m/N)

i i = l J”_ = N
75kick) =51105=3.4156502.... . (33 gypiciny, E=4.9148... 5= 33, F=6.505 1....7=(33

1/
The existence of this solution proves that the degenerac?l&z) 2, 73=8.3300.... These values are marked by the

actually happens. Its numerical value is closerfoof the ~ &rrows in Fig. 80). Agam we see that the correlation be-

cw-driven trap[see Eq(10)]. tween the minima and the arrows is best for the deepest
In complete analogy to the computation tﬁ(kick) we  Minima, in particular for the first minimum a}SR whereS(7)
compute,(kick). We obtain nearly reaches=0.
ma(kick) = 17 = 4.123 1056 ... . (34) IV. SPHERICAL DYNAMIC KINGDON TRAP

An |mportant question is whether the instabilities 7t
and 774 in the cylindrical dynamic Kingdon trap are acci-
dents, or whether this result is structurally stable. As dis-
cussed at the end of Sec. Il E this is a nontrivial question,
and it is far from guaranteed that other traps with these prop-
erties exist. Thus the purpose of this section is to prove that

in fact another trap exists, the spherical dynamic Kingdon

ing analytically that the “resonance method” yields the same,,, '\hich shows instabilities in analogy to the instabilities

result as the computation o;f; (kick) and #,(kick) via direct occurring atﬂa and 7’4 in the cylindrical dynamic Kingdon
fixed point calculations as done above. In order to use thg,

The existence of this solution proves that indeed a set of
degenerate period-4 fixed points collides with the period-1
center of the trapping island a;g(klck) of the kick map. The
numerical value ofy,(kick) is close to, of the cw-driven
trap [see Eq(10)].

The kicked Kingdon trap offers the possibility of check-

resonance method, we linearize 26) obtaining the phase- Flgure 6 shows a sketch of the spherical dynamic King-
Space mapping don trap. It consists of two nested ideally conducting shells
, (a spherical capacitpwith a superposition of ac and dc volt-
( ) A7) ( ) (35) ages applied between them. The dimensionless equation of
motion of the spherical dynamic Kingdon trap is given by
[14]
where
dr 1
K= ar’ 1 Ta 2mB(a - 4r?) a2~ [1-27 COS(Zt)]r_Z' (39
11— - 2 2 21
or 2r® [4r®+ 2apr + wa] Although this type of trap was studied intensively both theo-
retically [14] and experimentally13], instabilities were not
~ _or’ 472 Br? previously reported to occur in this type of trap. Figures 7
127 ap =mt [4r2+ 27pr + a2’ and 8, however, show that tHé=3 and N=4 resonances

produce the same type of instabilities in the spherical dy-
namic Kingdon trap as already seen in the cylindrical dy-
To_9p_ @ 2 [ 2« }ar namic Kingdon tragisee Sec. Il and Figs. 4 angl Fhe exact

ar 22 @ |w 2@r')? locations of theN=3 andN=4 collapse points were deter-
mined using the same methodology as was used in the case
, , of the cylindrical dynamic Kingdon tragsee Sec. Il ) As a
App= P__1 [E_Lz]a_r_ (36)  result we obtain that the primary trapping island of the
m 21')°]dp spherical dynamic Kingdon trap vanishes aiy,

=3.161 713 2... and,=3.864 074 7..
SinceA is an area- preserving mapping, its determinant is 1. Figures '(a)—?(c) and §a)-8(c) show the collapse sce-
Its residue, evaluated atr’'=a/2, p=0, is narios for theN=3 andN=4 resonances. They are very simi-
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0.004

-0.004

-
N
@ Yl

0.004

ac/dc

FIG. 6. Sketch of the spherical dynamic Kingdon trap. A super-
position of ac and dc voltages is applied between two concentric 7 oOF
ideally conducting shells. The resulting oscillating electric field pro-
duces dynamical trapping of a charged particle in the free space

between the two shells.
-0.004

lar to the corresponding scenarios exhibited by the cylindri- !
cal dynamic Kingdon trapicompare Figs. @)—4(c) and 1.78
5(a)-5(c)]. In particular even the orientations of the primary

trapping islands before and after the fixed point collisions are

the same. Thus the instabilities exhibited by the cylindrical T
dynamic Kingdon trap are not an isolated phenomenon, but

they are shared by at least one other trap: the spherical dy- 0.004
namic Kingdon trap. In the following section we show that
even the Paul trap, the most important and most widely used
rf trap, exhibits theN=3 andN=4 instabilities.

V. PAUL TRAP

Figure 9 shows a sketch of the Paul trap. It consists of an -0.004
ideally conducting hyperbolic ring electrode and two ideally
conducting hyperbolic end caps—3]. Since its invention by . : ' = '
Paul and collaborators in the 1950s the Paul trap has evolved 178 1.8 182 184 186
into one of the most important tools of modern atomic phys- r
ics. The dimensionless equations of motion for a single
charged particle stored in a Paul trap are given by

FIG. 7. Island collapse for the spherical dynamic Kingdon trap
at theN=3 resonancdga) »=3.13(immediately before the collapse

) X X point), (b) 7= 77;:3.161 713 2...(at the collapse point (c) 7
d _ =3.19(immediately after the collapse pojnfThe scenario is remi-
@ Y |=-la-2qcod20]l Y |, (40) niscent of the scenario exhibited by the cylindrical dynamic King-
A -2Z don trap at theN=3 resonance shown in Fig(ad—4(c).

wherea and g, proportional to the applied dc and ac volt-

ages, respectively, are the two dimensionless control paranstability of a trapped particle also depends on the initial con-
eters of the trap an&,Y,Z are the particle’s coordinates. ditions of its associated phase-space trajectory.

The Paul trap is globally stabjee., the solutions of Eq40) With the help of Mathieu functiong37] the linear, single-

are boundel] if the trap is operated with parameter combi- particle equationg40) are integrable and instabilities due to
nations(q,a) chosen from the interior of the stability area nonlinear resonance scenarios do not occur. This changes
defined by the lineg,d,e,f in Fig. 10. In this respect the drastically if two or more particles are simultaneously stored
Paul trap is completely different from the dynamic Kingdonin the trap. In this section we study the two-particle case in
traps where, in addition to the control parameter setting, theletail.
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T T —T FIG. 9. Sketch of the Paul trap. A superposition of ac and dc

0.06 - L T voltages is applied between an ideally conducting hyperbolic ring

0.03

-0.03

-0.06

electrode and two ideally conducting hyperbolic end caps.

X

-

=-[a-2qcog2t)]| vy |+ = (41)

7|3
_oy

This equation is nonlinear and its associated stroboscopic
o mapping, i.e., the mapping that také@m) to X[(n+21)],
L T may therefore exhibitN=3 and N=4 instabilities as dis-

> 21 292 23 cussed in Sec. Il E. This is indeed the case. But before we are

0.06

0.03

003 E

-0.06 [

ready to investigate th&l=3 andN=4 instabilities of the

FIG. 8. Island collapse for the spherical dynamic Kingdon trap  FIG. 10. Stability diagram of the Paul trap. The trap is globally
at theN=4 resonancga) »=23.82(immediately before the collapse stable if operated with &q,a) control parameter setting taken from
point), (b) 7= 7;2:3.864 074 7..(at the collapse poit(c) 7=3.9 inside of the stability region framed by the curvesl, e, andf. The
(immediately after the collapse pojniThe scenario is reminiscent different shades of gray indicate control parameter combinations
of the scenario exhibited by the cylindrical dynamic Kingdon trap at(d,a) where two simultaneously stored ions in their lowest-energy

the N=4 resonance shown in Fig(&-5c). state arez aligned (light shade of gray, labeledz"), xy-aligned
(darker shade of gray, labeleXY”), and aligned at an angle with

respect to the axis (dark shade of gray, labeled\;” and “Ay").
N . The area®\; andA, are not contiguous. Ared3; andC, separated
The center of massX=(X,Y,Z)=(X;+X,)/2 of two  py areaA, are chaotic regions. The heavy lines labeld3(XY)

simultaneously stored particles with Coordinat@gl andN=4(XY) correspond tdq,a) parameter combinations where a

=(X;,Y1,Z;) and )22:(X2,Y2,ZZ) satisfies the linear equa-
tions of motion(40) and is uninteresting in the present con-

two-ion crystal in thexy plane experiences aN=3 (N=3) reso-
nance and breaks up. The heavy lines labd¥&d3(Z) and N
=4(Z) correspond tdq,a) parameter combinations where a two-ion

text. The relative coordinaté=(x,y,z)=X; X, satisfies the crystal aligned with thez axis experiences aN=3 (N=4) reso-
equations of motion nance and breaks up.
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Paul trap in detail we have to discuss the possible two-ion
configurations in a Paul trap.
Stationary minimal-energy configurations in the Paul trap
are known as two-ion crysta[g43]. It is well known[43,44
that there are three possibilities for the alignment of two-ion
crystals in the Paul trap. The two ions of the crystal can
either align with thez axis, lie in thexy plane, or form an
angle with thez axis. Which of the three stationary configu-
rations is actually selected depends on the parameter combi-
nation (q,a) with which the trap is operated. Two ions in
their lowest-energy configuration are aligned with thaxis
if (g,a) is selected from the lightly shaded region of the
stability diagram shown in Fig. 10abeled Z”). The two
ions will lie in the xy plane if (q,a) is selected from the
darker area of the stability diagram in Fig. (l@beled XY")
and the two ions will form an angle with tteaxis if (q,a) is
selected from the two areas with the darkest shade of gray in
Fig. 10 (labeled ‘A;” and “A,”). The white areas of the sta-
bility diagram in Fig. 10, labeledC;"” and “C,,” correspond
to chaotic regions where simple stationary ion configurations .
are hard to find. r
We start with discussing-aligned ion crystals. In this
casex=y=0 for all time and only the equation of Eq(41)
needs to be considered. Using the methodology discussed in
Sec. Il D we determined the locations of tNe=3 andN=4
resonances af-aligned ion crystals. Since the Paul trap de-
pends on two control parameters, tNee3 andN=4 insta-
bilities are located on lines in the stability diagram of Fig. 10
labeledN=3(Z) andN=4(Z), respectively. Since theequa-
tion of Eq. (41) is defined for the entire range of values
shown in Fig. 10, we plotted the two curvés=3(Z) and
N=4(Z) in the entire interval 82g~0.7. In complete anal-
ogy to the z-aligned case we also plotted the linés
=3(XY) and N=4(XY), which correspond txy-aligned ion )
crystals. T
Figure 11 shows that on the curiee=3(XY) the primary
trapping island vanishes just like it did in the analogous
cases of the cylindrical and the spherical dynamic Kingdon
traps. But Fig. 1@b) shows that although the primary trap-
ping island is destroyed fofg,a) on N=3(XY), there is a
fundamental difference compared with the dynamic Kingdon
traps: even at thBl=3 resonance point large, stable, second-
ary, third-order islands remain. Figure 12 shows the island
destruction scenario for the cale-4. Here, too, the primary FIG. 11. Paul trapN=3 resonance scenaria=0.05, and(a) q

island vanishes, but a chain of large, stable, secondarkg 412 (b) q=0.4137=q’, and(c) q=0.416. In analogy to Figs.

fourth-order islands remains. o 4(a)—-4(c) the primary trapping island vanishesgit In contrast to
We now demonstrate that our prediction of the occurrenceigs. 4a-4(c) the three large, stable elliptic islands stay intact

of N=3 andN=4 instabilities in the Paul trap can be testedpefore, during, and after the instability.

experimentally. We focus on th&l=3 instability at (q

=0.5712a=0.25. A phase-space portrait of this case isclose to the center of the trapping islandoatq,. We then

shown in Fig. 184). The primary trapping island is clearly increased the control parametgat a rate ofj=4x 10°° per

destroyed. Figure 1B) is a composite phase-space portraitcycle. This way the two-ion crystal is “dragge45] very

in analogy to Fig. 2. Figure 1B) shows the primary trapping slowly (adiabatically towards the instability ag=q", which

island atq=q,=0.56. For increasing the primary trapping is reached after about 2:81(P cycles. If we assume that the

island moves to the left, where we show it againgatq, trap is operated at 11 MH®6], this corresponds to about

=0.59. The critical point, atj=q =0.5712, as shown in Fig. 0.25 s real time. Once the instability is reached, the two-ion

13(a), is located in between the two trapping islands. crystal quickly breaks ugon the scale of about 200 cycles,
In order to reveal thél=3 resonance aj=q’, we ran the or about 18us) and forms a cloud statgt6]. In the cloud

following simulation. We started zaligned two-ion crystal state the two ions are no longer locked into a regular, crys-
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FIG. 12. Paul tragN=4 resonance scenaria=0.3, and(a) q
=0.6055,(b) q=0.605 654=q", and(c) g=0.6057. In analogy to
Figs. 5a)-5(c) the primary trapping island vanishesgit In con-
trast to Figs. B)-5(c) the four large, stable, elliptic islands stay
intact before, during, and after the instability.

PHYSICAL REVIEW EG69, 056222(2004

0.05 -

-0.05

0.05 [

-0.05

FIG. 13. Destruction of a two-ion crystal at the Paul tidp3
instability ata=0.25,q=0.5712~q". (a) Phase-space portrait for
a=0.25,0=0.5712 illustrating the destruction of the primary trap-
ping island.(b) Composite phase-space portrait showing the pri-
mary trapping island aa=0.25, g=q;=0.56 anda=0.25, q=0,
=0.59. Also shown is the phase-space trajectory phlgned two-
ion crystal dragged slowly fromy, to g, breaking up af]” along
the unstable manifolds of the fixed point@it [see pane(a)] and
thus revealing the presence of tNe=3 instability atq’".

N=4 resonance lines also break up. Thus &4 instabili-
ties are also accessible to experimental testing.

VI. DISCUSSION

The Kingdon equationgl) and (39) are special cases of
the generalized Mathieu equatifhl]

2

% +[1-279cog2t)|r"=0, (42
which describes a whole range of charged-particle rf traps.
For y=1, e.g., we obtain the equation of moti¢t0) of the
single-particle Paul trapy=-1 corresponds to the cylindri-
cal dynamic Kingdon tragSec. I)), and y=-2 corresponds

to the spherical dynamic Kingdon trgec. IV). The case
vy=1 is not interesting, since it corresponds to the linear
Mathieu equatiorj37]. Since we foundN=3 andN=4 insta-
bilities for both the cylindrical(Sec. I) and the spherical
(Sec. V) dynamic Kingdon traps, it is possible, though not
guaranteedsee remark at the end of Sec. |l Bhat island
collapse is a generic property of the generalized Mathieu

talline configuration, but move quasi-independently on chaequation(42).

otic trajectories[47]. As shown in Fig. 1®), the crystal

The instabilities of the cylindrical dynamic Kingdon trap

breaks up along the unstable manifolds of the critical point at 75 and M manifest themselves most clearly in the stability
g=q". Since it has already been demonstrated experimentalffjunction S(7) discussed in Sec. Il. AlthougB(z) clearly

that it is possible to tell crystals from clouf6], our simu-
lation shows convincingly that the existence df 3 insta-
bility points can be tested experimentally.

We also ran simulations concerning tNe4 instabilities.

makes the case for instability af and 7,, the curve itself
has to be taken with a grain of salt. First of all it is well
known [48,49 that in general the borders of stability islands
are fractal. Although the phase-space resolution chosen to

These simulations show that crystals dragged towards theroduce Fig. 3 is higliit took about one month of CPU time
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on a six-processor cluster computer to prodStg) shown are met[28,34. Only very few hyperbolic systems are
in Fig. 3@)], the phase-space resolution is definitely not fineknown, and even fewer model real physical systems. We
enough to even begin to resolve the fractal borders of th&now of only one such system, where the absence of stable
stable islands. Still, the fractal nature of the borders results ifslands was proved analytically: the kicked one-dimensional
some “roughness” o8(7), which is visible in Fig. 3 from hydrogen aton{51,52. The dynamic Kingdon traps a,
about =6 on. For the purposes of this paper, however, armay be additional candidates. Numerical evidence, however,
ultra-accurateS() is not necessary. For our purposes it isis not proof. If the absence of islands af is indeed
enough to know the approximate behavior Sffy) with a ~ confirmed, a proof may be provided using the methods
moderate resolutioffor instance as chosen to produce Fig.in Refs.[51,52.

3), sinceS(7)’s purpose was more than adequately accom- C_omp_ared with the Paul t_rap the instabili'gies of the dy-
plished when it alerted us to the possible existencg,aind ~ namic Kingdon traps are particularly devastating. In the Paul
7, The subsequent investigation of the instability of the trap@P €ncountering amN=3 or an N=4 instability merely

at 77, and 77, in Sec. Il does not at all rely 08(7), but does ~Means the breakup of an ordered ion configuration; the ions
instead rely exclusively on visual inspection of detailedth€mselves remain trapped. In the dynamic Kingdon traps,
Poincaré sections, analytical arguments, and numerical confloWeVer, encountering &i=3 or anN=4 instability means
putations of resonance values. the complete loss of the particle from the trap.

We stopped our systematic surveySif) at »=10. This As_ shown by the insets of Fig. 3 the shrinking arjd reex-
raises the question of whether there may be further instabiliPanston ,Of the primary trapping |s!and of the qyllndncal dy-
ties for > 10. We think that this is unlikely because of the "@mic Kingdon trap takes place in a narroyinterval of
following four reasons(i) As mentioned in Sec. Il E, linear 27~0.1. In order to resolve it, am resolution of 67
stability theory breaks dowanly for the four special values =0.01, as c_hosen In our calculathns, may be desirable. The
R=0,1/2,3/4,1. In thease of the kicked Kingdon trap, we duestion arises whether a resolutiondjf=0.01 can be re-
have 0<R<8/99 [see Eq.21)] for »>10, which implies  alized experimentally. Using the relatigh2]
two things:(a) 0<R<8/99 does not include any of the ex- Ve
ceptionalR values andb) 0<R<8/99 is a subinterval of n= V.
0<R<1 for which the primary trapping island is stalgkee de
Sec. Il B. Thus the kicked Kingdon trap is stable fgpr>10.  whereV,, and V. are, respectively, the ac and dc voltages
(i) Since we showed in Sec. Il that the kicked Kingdon trapapplied to the trap, the necessayyesolution translates into
is an excellent model for the cw-driven Kingdon trap, andvoltage resolutions. In order to answer the question of
since the trapping efficiencieX(#») are qualitatively similar whether §7=0.01 can be implemented experimentally, we
for the two trapgsee Fig. 8a) and 3b)], we conclude that use the example of a possible experimental setup for trapping
since the kicked Kingdon trap is stable fgr>10 [see(i) Mg* ions as discussed in Ref12]. In this example it is
abovd, so is the cw-driven trap(ii) Expanding Eqs(13)  assumed that the trap is operated with a dc voltag¥ of
and(14) to fourth order in 14 it can be shown that Eq15) =100 V. At 7, according to Eq(44), this translates into
is stable fory>10. (iv) The largers, the more accurate the V, =723 V. Keeping V. fixed, §7=0.01 translates into
pseudopotential approximatiofi1,12,33. This is so, be- §V,=2 V. Changing a voltage of about 700 V in steps of
cause one of the conditions of the applicability of the2 V is certainly technically feasible. It seems to us that even
pseudopotential approximation is that the amplitude of theiner resolutions should be technically possible, which would
micromotion is small compared with the “guiding-center” or allow an experimental test of the existence and locations of
“macromotion”[35,50. In our case the guiding center is the the instability points in the cylindrical dynamic Kingdon
geometric center of the limit cyclér (t),r (t)], which is  trap.
stationary for fixeds. According to Eq.(A2) the geometric

(44)

center of the limit cycle is located approximately gat\2 VII. SUMMARY AND CONCLUSIONS
and the amplitude of the micromotion, again according to . , ) , ) .
Eq. (A2), is approximately 1¢2. Therefore In this paper we investigated in detail recently discovered

instabilities in several types of rf traps including the Paul
amplitude of micromotion 1 trap, the most Wi_dely u_sgd and most im_portant rf trap. We
, —~——0 forny— . showed that the instabilities are due to island collapse, i.e.,
amplitude of macromotion 7 the vanishing of the primary trapping island due to a colli-
(43 sion of the center period-1 fixed point of the primary trap-
ping island with a set of collapsed, unstable period-3 and a
Therefore we trust the stability prediction of pseudopotentiaket of collapsed, unstable period-4 fixed points, respectively.
theory for > 10. We computed accurate values of the critical control param-
Some preliminary surveys of the phase space of theters for four different types of rf traps, the cw-driven cylin-
kicked and the cw-driven cylindrical dynamic Kingdon traps drical and spherical dynamic Kingdon traps, the kicked cy-
indicate that both traps are completely unstableygaﬁ.e., at lindrical Kingdon trap and the Paul trap. For the cw-driven
7=y, their phase space does not seem to exhibit any stabkeylindrical dynamic Kingdon trap we computed analytical
islands whatsoever. A system without any stable islands is approximations ton; and 7;2 which are in good agreement
hyperbolic dynamical system if certain additional conditionswith the exact values of the critical control parameters in this
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case. In the case of the kicked trap we were able to comput('5
exact analytical expressions for the critical control param-
eters where the instabilities occur. We also observed and ex 1
plained reduced stability of the kicked and cw-driven cylin- 5
drical dynamic Kingdon traps at additional valuqﬁ, N

=5 of the traps’ control parametey. For experimentalists
knowledge of the exact positions of the dynamic instabilities

of rf traps is essential for successfully operating these traps °
in the laboratory. For theorists the existence of the dynamic
instabilities in rf traps opens up plenty of possibilities for -os
further research into the nonlinear properties of these traps. #
case in point is our preliminary numerical result on the ab- |
sence of stable islands in the dynamic Kingdon trapsg at

= 7;;, which, if confirmed, provides the opportunity of adding
another member to the very small set of experimentally rel- "
evant completely chaotic, hyperbolic systems.

FIG. 14. The limit cycler (t) at »=5 (full line) and two of its
approximations. Long dashes: two-harmonics approxima{i%ﬂ).

] ) Short dashes: three-harmonics approximaﬁ@(t). Inset: magni-
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APPENDIX: LIMIT CYCLE 2A§+ 8A§: 1, 8A0A2+A€: 0.

(A4)

2A0A1 + A A = — 7,
Since the limit cycler (t) of the cylindrical dynamic

Kingdon trap is so important for organizing the phase-space ] . ] o

dynamics of this trap, we present here a high-accuracy ang:hlszsystem of equations is easily solved . Defining

lytical approximation ofr,(t). As shown in Fig. 2 the limit X=Ag we obtain the cubic equation

cycle determines the fixed point of the primary trapping is-

land. Therefore the calculations presented here are also of

direct relevance for a high-accuracy analytical calculation o

the position of the center of the primary trapping island.
Sincer(t) is m-periodic, and since Eq1) is symmetric

144¢ - 120 + (25 + 167°)x - 87° = 0. (A5)

tI'his equation is solved using Cardan’s resolution formulas
[37]. Following the procedure outlined in R¢&3] we obtain

undert——t, we expand it into a Fourier-cos series ) i[ , 2_5] ) i{l_ZS 7]2]
» P=2717 "a8 981|576 7|
r(t) = > Aycog2mt). (A1)
m=0
. ' . ) = 5
Keeping only the first two terms in EqA1) defines the u=[-q+\Vp+ ¥ v=- E, X=Uu+v+—,
truncated approximatior{z)(t). Insertingr(Lz)(t) into Eq. (1), u 18
comparing terms, and selecting the solution Wiﬁ’\(t)>0
for all t, we obtain X - 1-2
V8 — 16x 8

1
r(LZ)(t) /A —cog2t). (A2)
2 2

Sincep®+0?>0 for =3, Eq.(A5) has only one real solu-
tion [37,53 and therefore Eq(A6) is the only solution of

Eq. (A5) of interest in the present context. Using E46) in

This solution was already computed in R§f1] and was
studied in the presence of damping in R&2]. It is also the

basis for computing the analytical approximationszipand
7, in Sec. Il D. Forp=5 the approximate limit cycle(Lz)(t) is
shown in Fig. 14(long dashes Although only two terms
were kept in Eq(AL), r(LZ)(t) is surprisingly close to the exact
limit cycle (full line in Fig. 14).

A high-accuracy approximation af (t) is obtained by
keeping the first three terms in EGAL). Inserting

rd(t) = Ag + A cog2t) + A, cog4t) (A3)

Eqg. (A3) we obtain an explicit analytical result fcnf’)(t)
(short dashes in Fig. 34which is almost indistinguishable
fromr,(t) on the scale of Fig. 14. The inset in Fig. 14 shows
a magnification of the limit cycles in the vicinity of=2.85.

The inset shows that even under strong magnification there is
hardly any difference between(t) and rf’)(t). In fact, aty

=5, the relative errob[r(f)(t)—rL(t)]/rL(t)| <7x10*forallt

and [[F2(t) -1 (©1/i™|<6x 1072 for all t, where ™
=max|r(t)|. The error of the velocities is normalized to the

into Eq.(1), we obtain the following nonlinear algebraic sys- maximum velocity since (t)=0 at the turning points of the

tem of equations for the expansion coefficients:

limit cycle.
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